Robert Metzger created FLINK-13738:
-------------------------------------- Summary: NegativeArraySizeException in LongHybridHashTable Key: FLINK-13738 URL: https://issues.apache.org/jira/browse/FLINK-13738 Project: Flink Issue Type: Task Components: Table SQL / Runtime Affects Versions: 1.9.0 Reporter: Robert Metzger Executing this (meaningless) query: {code:java} INSERT INTO sinkTable ( SELECT CONCAT( CAST( id AS VARCHAR), CAST( COUNT(*) AS VARCHAR)) as something, 'const' FROM CsvTable, table1 WHERE sometxt LIKE 'a%' AND id = key GROUP BY id ) {code} leads to the following exception: {code:java} Caused by: java.lang.NegativeArraySizeException at org.apache.flink.table.runtime.hashtable.LongHybridHashTable.tryDenseMode(LongHybridHashTable.java:216) at org.apache.flink.table.runtime.hashtable.LongHybridHashTable.endBuild(LongHybridHashTable.java:105) at LongHashJoinOperator$36.endInput1$(Unknown Source) at LongHashJoinOperator$36.endInput(Unknown Source) at org.apache.flink.streaming.runtime.tasks.OperatorChain.endInput(OperatorChain.java:256) at org.apache.flink.streaming.runtime.io.StreamTwoInputSelectableProcessor.checkFinished(StreamTwoInputSelectableProcessor.java:359) at org.apache.flink.streaming.runtime.io.StreamTwoInputSelectableProcessor.processInput(StreamTwoInputSelectableProcessor.java:193) at org.apache.flink.streaming.runtime.tasks.StreamTask.performDefaultAction(StreamTask.java:276) at org.apache.flink.streaming.runtime.tasks.StreamTask.run(StreamTask.java:298) at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:403) at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:687) at org.apache.flink.runtime.taskmanager.Task.run(Task.java:517) at java.lang.Thread.run(Thread.java:748){code} This is the plan: {code:java} == Abstract Syntax Tree == LogicalSink(name=[sinkTable], fields=[f0, f1]) +- LogicalProject(something=[CONCAT(CAST($0):VARCHAR(2147483647) CHARACTER SET "UTF-16LE", CAST($1):VARCHAR(2147483647) CHARACTER SET "UTF-16LE" NOT NULL)], EXPR$1=[_UTF-16LE'const']) +- LogicalAggregate(group=[ {0} ], agg#0=[COUNT()]) +- LogicalProject(id=[$1]) +- LogicalFilter(condition=[AND(LIKE($0, _UTF-16LE'a%'), =($1, CAST($2):BIGINT))]) +- LogicalJoin(condition=[true], joinType=[inner]) :- LogicalTableScan(table=[[default_catalog, default_database, CsvTable, source: [CsvTableSource(read fields: sometxt, id)]]]) +- LogicalTableScan(table=[[default_catalog, default_database, table1, source: [GeneratorTableSource(key, rowtime, payload)]]]) == Optimized Logical Plan == Sink(name=[sinkTable], fields=[f0, f1]): rowcount = 1498810.6659336376, cumulative cost = {4.459964319978008E8 rows, 1.879799762133187E10 cpu, 4.8E9 io, 8.4E8 network, 1.799524266373455E8 memory} +- Calc(select=[CONCAT(CAST(id), CAST($f1)) AS something, _UTF-16LE'const' AS EXPR$1]): rowcount = 1498810.6659336376, cumulative cost = {4.444976213318672E8 rows, 1.8796498810665936E10 cpu, 4.8E9 io, 8.4E8 network, 1.799524266373455E8 memory} +- HashAggregate(isMerge=[false], groupBy=[id], select=[id, COUNT(*) AS $f1]): rowcount = 1498810.6659336376, cumulative cost = {4.429988106659336E8 rows, 1.8795E10 cpu, 4.8E9 io, 8.4E8 network, 1.799524266373455E8 memory} +- Calc(select=[id]): rowcount = 1.575E7, cumulative cost = {4.415E8 rows, 1.848E10 cpu, 4.8E9 io, 8.4E8 network, 1.2E8 memory} +- HashJoin(joinType=[InnerJoin], where=[=(id, key0)], select=[id, key0], build=[left]): rowcount = 1.575E7, cumulative cost = {4.2575E8 rows, 1.848E10 cpu, 4.8E9 io, 8.4E8 network, 1.2E8 memory} :- Exchange(distribution=[hash[id]]): rowcount = 5000000.0, cumulative cost = {1.1E8 rows, 8.4E8 cpu, 2.0E9 io, 4.0E7 network, 0.0 memory} : +- Calc(select=[id], where=[LIKE(sometxt, _UTF-16LE'a%')]): rowcount = 5000000.0, cumulative cost = {1.05E8 rows, 0.0 cpu, 2.0E9 io, 0.0 network, 0.0 memory} : +- TableSourceScan(table=[[default_catalog, default_database, CsvTable, source: [CsvTableSource(read fields: sometxt, id)]]], fields=[sometxt, id]): rowcount = 1.0E8, cumulative cost = {1.0E8 rows, 0.0 cpu, 2.0E9 io, 0.0 network, 0.0 memory} +- Exchange(distribution=[hash[key0]]): rowcount = 1.0E8, cumulative cost = {3.0E8 rows, 1.68E10 cpu, 2.8E9 io, 8.0E8 network, 0.0 memory} +- Calc(select=[CAST(key) AS key0]): rowcount = 1.0E8, cumulative cost = {2.0E8 rows, 0.0 cpu, 2.8E9 io, 0.0 network, 0.0 memory} +- TableSourceScan(table=[[default_catalog, default_database, table1, source: [GeneratorTableSource(key, rowtime, payload)]]], fields=[key, rowtime, payload]): rowcount = 1.0E8, cumulative cost = {1.0E8 rows, 0.0 cpu, 2.8E9 io, 0.0 network, 0.0 memory} == Physical Execution Plan == Stage 1 : Data Source content : collect elements with CollectionInputFormat Stage 2 : Operator content : CsvTableSource(read fields: sometxt, id) ship_strategy : REBALANCE Stage 3 : Operator content : SourceConversion(table=[default_catalog.default_database.CsvTable, source: [CsvTableSource(read fields: sometxt, id)]], fields=[sometxt, id]) ship_strategy : FORWARD Stage 4 : Operator content : Calc(select=[id], where=[(sometxt LIKE _UTF-16LE'a%')]) ship_strategy : FORWARD Stage 6 : Data Source content : collect elements with CollectionInputFormat Stage 7 : Operator content : SourceConversion(table=[default_catalog.default_database.table1, source: [GeneratorTableSource(key, rowtime, payload)]], fields=[key, rowtime, payload]) ship_strategy : FORWARD Stage 8 : Operator content : Calc(select=[CAST(key) AS key0]) ship_strategy : FORWARD Stage 10 : Operator content : HashJoin(joinType=[InnerJoin], where=[(id = key0)], select=[id, key0], build=[left]) ship_strategy : HASH[id] Stage 11 : Operator content : Calc(select=[id]) ship_strategy : FORWARD Stage 12 : Operator content : HashAggregate(isMerge=[false], groupBy=[id], select=[id, COUNT(*) AS $f1]) ship_strategy : FORWARD Stage 13 : Operator content : Calc(select=[(CAST(id) CONCAT CAST($f1)) AS something, _UTF-16LE'const' AS EXPR$1]) ship_strategy : FORWARD Stage 14 : Operator content : SinkConversionToRow ship_strategy : FORWARD Stage 15 : Operator content : Map ship_strategy : FORWARD Stage 16 : Data Sink content : Sink: CsvTableSink(f0, f1) ship_strategy : FORWARD {code} -- This message was sent by Atlassian JIRA (v7.6.14#76016) |
Free forum by Nabble | Edit this page |