[jira] [Created] (FLINK-11862) 在同一条流上进行多次不同的sql,第二个sql的where条件不可用

classic Classic list List threaded Threaded
1 message Options
Reply | Threaded
Open this post in threaded view
|

[jira] [Created] (FLINK-11862) 在同一条流上进行多次不同的sql,第二个sql的where条件不可用

Shang Yuanchun (Jira)
zhengbm created FLINK-11862:
-------------------------------

             Summary: 在同一条流上进行多次不同的sql,第二个sql的where条件不可用
                 Key: FLINK-11862
                 URL: https://issues.apache.org/jira/browse/FLINK-11862
             Project: Flink
          Issue Type: Bug
          Components: API / Table SQL
    Affects Versions: 1.7.2
         Environment: flink 1.7版本 java 1.8
            Reporter: zhengbm


List<String> fields = Lists.newArrayList("rawMessage","timestamp");
Schema schema = new Schema();
for (int i = 0; i < fields.size(); i++) {
 schema.field(fields.get(i), Types.STRING()).from(fields.get(i));
}
tableEnvironment.connect(new Kafka()
 .version("0.8")
 .properties(properties)
 .topic("raw_playtime_h5_source")
 .startFromLatest()
 )
 .withFormat(new Json().failOnMissingField(false).deriveSchema())
 .withSchema(schema)
 .inAppendMode()
 .registerTableSource("t1");

Table table2 = tableEnvironment
 .sqlQuery("select maps,`timestamp`,CARDINALITY(maps) AS maps_length ,1 as flash from t1 ,LATERAL TABLE(split(rawMessage,'\\t')) as T(maps) ");

tableEnvironment.registerTable("t2", table2);

Table table = tableEnvironment.sqlQuery("select `timestamp`,maps_length from t2 where maps_length>0");

TypeInformation typeInformation = table.getSchema().toRowType();

String[] columns = table.getSchema().getFieldNames();
DataStream<String> dataStream = tableEnvironment
 .toAppendStream(table, typeInformation)
 .map(new PhysicTransformMap(columns, 0));

dataStream.print();

try {
 env.execute();
} catch (Exception e) {
 e.printStackTrace();
}

注:kafka中的数据流格式如下\{"timestamp" : "xxxx","rawMessage":"xxx\txxx\txxxx\t"}

 

Exception in thread "main" org.apache.flink.table.codegen.CodeGenException: Invalid input access.
 at org.apache.flink.table.codegen.CodeGenerator$$anonfun$15.apply(CodeGenerator.scala:587)
 at org.apache.flink.table.codegen.CodeGenerator$$anonfun$15.apply(CodeGenerator.scala:587)
 at scala.Option.getOrElse(Option.scala:120)
 at org.apache.flink.table.codegen.CodeGenerator.visitInputRef(CodeGenerator.scala:587)
 at org.apache.flink.table.codegen.CodeGenerator.visitInputRef(CodeGenerator.scala:66)
 at org.apache.calcite.rex.RexInputRef.accept(RexInputRef.java:112)
 at org.apache.flink.table.codegen.CodeGenerator$$anonfun$16.apply(CodeGenerator.scala:754)
 at org.apache.flink.table.codegen.CodeGenerator$$anonfun$16.apply(CodeGenerator.scala:744)
 at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
 at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
 at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
 at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
 at scala.collection.TraversableLike$class.map(TraversableLike.scala:245)
 at scala.collection.AbstractTraversable.map(Traversable.scala:104)
 at org.apache.flink.table.codegen.CodeGenerator.visitCall(CodeGenerator.scala:744)
 at org.apache.flink.table.codegen.CodeGenerator.visitCall(CodeGenerator.scala:66)
 at org.apache.calcite.rex.RexCall.accept(RexCall.java:107)
 at org.apache.flink.table.codegen.CodeGenerator$$anonfun$16.apply(CodeGenerator.scala:754)
 at org.apache.flink.table.codegen.CodeGenerator$$anonfun$16.apply(CodeGenerator.scala:744)
 at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
 at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:245)
 at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
 at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
 at scala.collection.TraversableLike$class.map(TraversableLike.scala:245)
 at scala.collection.AbstractTraversable.map(Traversable.scala:104)
 at org.apache.flink.table.codegen.CodeGenerator.visitCall(CodeGenerator.scala:744)
 at org.apache.flink.table.codegen.CodeGenerator.visitCall(CodeGenerator.scala:66)
 at org.apache.calcite.rex.RexCall.accept(RexCall.java:107)
 at org.apache.flink.table.codegen.CodeGenerator.generateExpression(CodeGenerator.scala:247)
 at org.apache.flink.table.plan.nodes.CommonCorrelate$class.generateCollector(CommonCorrelate.scala:155)
 at org.apache.flink.table.plan.nodes.datastream.DataStreamCorrelate.generateCollector(DataStreamCorrelate.scala:38)
 at org.apache.flink.table.plan.nodes.datastream.DataStreamCorrelate.translateToPlan(DataStreamCorrelate.scala:116)
 at org.apache.flink.table.plan.nodes.datastream.DataStreamCalc.translateToPlan(DataStreamCalc.scala:97)
 at org.apache.flink.table.api.StreamTableEnvironment.translateToCRow(StreamTableEnvironment.scala:967)
 at org.apache.flink.table.api.StreamTableEnvironment.translate(StreamTableEnvironment.scala:894)
 at org.apache.flink.table.api.StreamTableEnvironment.translate(StreamTableEnvironment.scala:864)
 at org.apache.flink.table.api.java.StreamTableEnvironment.toAppendStream(StreamTableEnvironment.scala:224)
 at org.apache.flink.table.api.java.StreamTableEnvironment.toAppendStream(StreamTableEnvironment.scala:173)



--
This message was sent by Atlassian JIRA
(v7.6.3#76005)