Hi all,
I would like to start the vote for FLIP-78[1] which is discussed and reached consensus in the discussion thread[2]. The vote will be open for at least 72 hours. I'll try to close it by 2019-10-16 18:00 UTC, unless there is an objection or not enough votes. Thanks, Wei [1] https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management <https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management> [2] http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html <http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html> |
+1
Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > Hi all, > > I would like to start the vote for FLIP-78[1] which is discussed and > reached consensus in the discussion thread[2]. > > The vote will be open for at least 72 hours. I'll try to close it by > 2019-10-16 18:00 UTC, unless there is an objection or not enough votes. > > Thanks, > Wei > > [1] > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > < > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > > > [2] > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > < > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > > > |
+1
Good job, Wei! Best, Hequn On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> wrote: > Hi Wei, > > +1 (non-binding). Thanks for driving this. > > Thanks, > Dian > > > 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> 写道: > > > > +1 > > > > Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > > > >> Hi all, > >> > >> I would like to start the vote for FLIP-78[1] which is discussed and > >> reached consensus in the discussion thread[2]. > >> > >> The vote will be open for at least 72 hours. I'll try to close it by > >> 2019-10-16 18:00 UTC, unless there is an objection or not enough votes. > >> > >> Thanks, > >> Wei > >> > >> [1] > >> > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > >> < > >> > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > >>> > >> [2] > >> > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > >> < > >> > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > >>> > >> > >> > >> > > |
+1
Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: > +1 > > Good job, Wei! > > Best, Hequn > > On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> wrote: > > > Hi Wei, > > > > +1 (non-binding). Thanks for driving this. > > > > Thanks, > > Dian > > > > > 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> 写道: > > > > > > +1 > > > > > > Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > > > > > >> Hi all, > > >> > > >> I would like to start the vote for FLIP-78[1] which is discussed and > > >> reached consensus in the discussion thread[2]. > > >> > > >> The vote will be open for at least 72 hours. I'll try to close it by > > >> 2019-10-16 18:00 UTC, unless there is an objection or not enough > votes. > > >> > > >> Thanks, > > >> Wei > > >> > > >> [1] > > >> > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > > >> < > > >> > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > > >>> > > >> [2] > > >> > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > >> < > > >> > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > >>> > > >> > > >> > > >> > > > > > -- Best Regards Jeff Zhang |
Sorry for joining the discussion late.
The Beam environment already supports artifact staging, it works out of the box with the Docker environment. I think it would be helpful to explain in the FLIP how this proposal relates to what Beam offers / how it would be integrated. Thanks, Thomas On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> wrote: > +1 > > Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: > > > +1 > > > > Good job, Wei! > > > > Best, Hequn > > > > On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> wrote: > > > > > Hi Wei, > > > > > > +1 (non-binding). Thanks for driving this. > > > > > > Thanks, > > > Dian > > > > > > > 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> 写道: > > > > > > > > +1 > > > > > > > > Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > > > > > > > >> Hi all, > > > >> > > > >> I would like to start the vote for FLIP-78[1] which is discussed and > > > >> reached consensus in the discussion thread[2]. > > > >> > > > >> The vote will be open for at least 72 hours. I'll try to close it by > > > >> 2019-10-16 18:00 UTC, unless there is an objection or not enough > > votes. > > > >> > > > >> Thanks, > > > >> Wei > > > >> > > > >> [1] > > > >> > > > > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > > > >> < > > > >> > > > > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > > > >>> > > > >> [2] > > > >> > > > > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > >> < > > > >> > > > > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > >>> > > > >> > > > >> > > > >> > > > > > > > > > > > -- > Best Regards > > Jeff Zhang > |
Hi Thomas,
Thanks a lot for your suggestion! As you can see from the section "Goals" that this FLIP focuses on the dependency management in process mode. However, the APIs and design proposed in this FLIP also applies for the docker mode. So it makes sense to me to also describe how this design is integated to the artifact staging service of Apache Beam in docker mode. I have updated the design doc and looking forward to your feedback. Thanks, Wei > 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: > > Sorry for joining the discussion late. > > The Beam environment already supports artifact staging, it works out of the > box with the Docker environment. I think it would be helpful to explain in > the FLIP how this proposal relates to what Beam offers / how it would be > integrated. > > Thanks, > Thomas > > > On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> wrote: > >> +1 >> >> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: >> >>> +1 >>> >>> Good job, Wei! >>> >>> Best, Hequn >>> >>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> wrote: >>> >>>> Hi Wei, >>>> >>>> +1 (non-binding). Thanks for driving this. >>>> >>>> Thanks, >>>> Dian >>>> >>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> 写道: >>>>> >>>>> +1 >>>>> >>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: >>>>> >>>>>> Hi all, >>>>>> >>>>>> I would like to start the vote for FLIP-78[1] which is discussed and >>>>>> reached consensus in the discussion thread[2]. >>>>>> >>>>>> The vote will be open for at least 72 hours. I'll try to close it by >>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not enough >>> votes. >>>>>> >>>>>> Thanks, >>>>>> Wei >>>>>> >>>>>> [1] >>>>>> >>>> >>> >> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>> < >>>>>> >>>> >>> >> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>> >>>>>> [2] >>>>>> >>>> >>> >> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>> < >>>>>> >>>> >>> >> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>> >>>>>> >>>>>> >>>>>> >>>> >>>> >>> >> >> >> -- >> Best Regards >> >> Jeff Zhang >> |
I'm also late to the party here :) When I saw the first draft, I was
thinking how exactly the design doc would tie in with Beam. Thanks for the update. A couple of comments with this regard: > Flink has provided a distributed cache mechanism and allows users to upload their files using "registerCachedFile" method in ExecutionEnvironment/StreamExecutionEnvironment. The python files users specified through "add_python_file", "set_python_requirements" and "add_python_archive" are also uploaded through this method eventually. For process-based execution we use Flink's cache distribution instead of Beam's artifact staging. > Apache Beam Portability Framework already supports artifact staging that works out of the box with the Docker environment. We can use the artifact staging service defined in Apache Beam to transfer the dependencies from the operator to Python SDK harness running in the docker container. Do we want to implement two different ways of staging artifacts? It seems sensible to use the same artifact staging functionality also for the process-based execution. Apart from being simpler, this would also allow the process-based execution to run in other environments than the Flink TaskManager environment. Thanks, Max On 15.10.19 11:13, Wei Zhong wrote: > Hi Thomas, > > Thanks a lot for your suggestion! > > As you can see from the section "Goals" that this FLIP focuses on the dependency management in process mode. However, the APIs and design proposed in this FLIP also applies for the docker mode. So it makes sense to me to also describe how this design is integated to the artifact staging service of Apache Beam in docker mode. I have updated the design doc and looking forward to your feedback. > > Thanks, > Wei > >> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: >> >> Sorry for joining the discussion late. >> >> The Beam environment already supports artifact staging, it works out of the >> box with the Docker environment. I think it would be helpful to explain in >> the FLIP how this proposal relates to what Beam offers / how it would be >> integrated. >> >> Thanks, >> Thomas >> >> >> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> wrote: >> >>> +1 >>> >>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: >>> >>>> +1 >>>> >>>> Good job, Wei! >>>> >>>> Best, Hequn >>>> >>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> wrote: >>>> >>>>> Hi Wei, >>>>> >>>>> +1 (non-binding). Thanks for driving this. >>>>> >>>>> Thanks, >>>>> Dian >>>>> >>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> 写道: >>>>>> >>>>>> +1 >>>>>> >>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: >>>>>> >>>>>>> Hi all, >>>>>>> >>>>>>> I would like to start the vote for FLIP-78[1] which is discussed and >>>>>>> reached consensus in the discussion thread[2]. >>>>>>> >>>>>>> The vote will be open for at least 72 hours. I'll try to close it by >>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not enough >>>> votes. >>>>>>> >>>>>>> Thanks, >>>>>>> Wei >>>>>>> >>>>>>> [1] >>>>>>> >>>>> >>>> >>> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>> < >>>>>>> >>>>> >>>> >>> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>> >>>>>>> [2] >>>>>>> >>>>> >>>> >>> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>> < >>>>>>> >>>>> >>>> >>> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>> >>>>>>> >>>>>>> >>>>>>> >>>>> >>>>> >>>> >>> >>> >>> -- >>> Best Regards >>> >>> Jeff Zhang >>> > |
Hi Max,
Sorry for the late reply. Regarding the issue you mentioned above, I'm glad to share my thoughts: > For process-based execution we use Flink's cache distribution instead of Beam's artifact staging. In current design, we use Flink's cache distribution to upload users' files from client to cluster in both docker mode and process mode. That is, Flink's cache distribution and Beam's artifact staging service work together in docker mode. > Do we want to implement two different ways of staging artifacts? It seems sensible to use the same artifact staging functionality also for the process-based execution. I agree that the implementation will be simple if we use the same artifact staging functionality also for the process-based execution. However, it's not the best for performance as it will introduce an additional network transmission, as in process mode TaskManager and python worker share the same environment, in which case the user files in Flink Distribute Cache can be accessed by python worker directly. We do not need the staging service in this case. > Apart from being simpler, this would also allow the process-based execution to run in other environments than the Flink TaskManager environment. IMHO, this case is more like docker mode, and we can share or reuse the code of Beam docker mode. Furthermore, in this case python worker is launched by the operator, so it is always in the same environment as the operator. Thanks again for your feedback, and it is valuable for find out the final best architecture. Feel free to correct me if there is anything incorrect. Best, Jincheng Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: > I'm also late to the party here :) When I saw the first draft, I was > thinking how exactly the design doc would tie in with Beam. Thanks for > the update. > > A couple of comments with this regard: > > > Flink has provided a distributed cache mechanism and allows users to > upload their files using "registerCachedFile" method in > ExecutionEnvironment/StreamExecutionEnvironment. The python files users > specified through "add_python_file", "set_python_requirements" and > "add_python_archive" are also uploaded through this method eventually. > > For process-based execution we use Flink's cache distribution instead of > Beam's artifact staging. > > > Apache Beam Portability Framework already supports artifact staging that > works out of the box with the Docker environment. We can use the artifact > staging service defined in Apache Beam to transfer the dependencies from > the operator to Python SDK harness running in the docker container. > > Do we want to implement two different ways of staging artifacts? It > seems sensible to use the same artifact staging functionality also for > the process-based execution. Apart from being simpler, this would also > allow the process-based execution to run in other environments than the > Flink TaskManager environment. > > Thanks, > Max > > On 15.10.19 11:13, Wei Zhong wrote: > > Hi Thomas, > > > > Thanks a lot for your suggestion! > > > > As you can see from the section "Goals" that this FLIP focuses on the > dependency management in process mode. However, the APIs and design > proposed in this FLIP also applies for the docker mode. So it makes sense > to me to also describe how this design is integated to the artifact staging > service of Apache Beam in docker mode. I have updated the design doc and > looking forward to your feedback. > > > > Thanks, > > Wei > > > >> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: > >> > >> Sorry for joining the discussion late. > >> > >> The Beam environment already supports artifact staging, it works out of > the > >> box with the Docker environment. I think it would be helpful to explain > in > >> the FLIP how this proposal relates to what Beam offers / how it would be > >> integrated. > >> > >> Thanks, > >> Thomas > >> > >> > >> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> wrote: > >> > >>> +1 > >>> > >>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: > >>> > >>>> +1 > >>>> > >>>> Good job, Wei! > >>>> > >>>> Best, Hequn > >>>> > >>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> > wrote: > >>>> > >>>>> Hi Wei, > >>>>> > >>>>> +1 (non-binding). Thanks for driving this. > >>>>> > >>>>> Thanks, > >>>>> Dian > >>>>> > >>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> 写道: > >>>>>> > >>>>>> +1 > >>>>>> > >>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > >>>>>> > >>>>>>> Hi all, > >>>>>>> > >>>>>>> I would like to start the vote for FLIP-78[1] which is discussed > and > >>>>>>> reached consensus in the discussion thread[2]. > >>>>>>> > >>>>>>> The vote will be open for at least 72 hours. I'll try to close it > by > >>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not enough > >>>> votes. > >>>>>>> > >>>>>>> Thanks, > >>>>>>> Wei > >>>>>>> > >>>>>>> [1] > >>>>>>> > >>>>> > >>>> > >>> > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > >>>>>>> < > >>>>>>> > >>>>> > >>>> > >>> > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > >>>>>>>> > >>>>>>> [2] > >>>>>>> > >>>>> > >>>> > >>> > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > >>>>>>> < > >>>>>>> > >>>>> > >>>> > >>> > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > >>>>>>>> > >>>>>>> > >>>>>>> > >>>>>>> > >>>>> > >>>>> > >>>> > >>> > >>> > >>> -- > >>> Best Regards > >>> > >>> Jeff Zhang > >>> > > > |
Beam artifact staging currently relies on shared file system and there are
limitations, for example when running locally with Docker and local FS. It sounds like a distributed cache based implementation might be a good (better?) option for artifact staging even for the Beam Flink runner? If so, can the implementation you propose be compatible with the Beam artifact staging service so that it can be plugged into the Beam Flink runner? Thanks, Thomas On Mon, Oct 21, 2019 at 2:34 AM jincheng sun <[hidden email]> wrote: > Hi Max, > > Sorry for the late reply. Regarding the issue you mentioned above, I'm glad > to share my thoughts: > > > For process-based execution we use Flink's cache distribution instead of > Beam's artifact staging. > > In current design, we use Flink's cache distribution to upload users' files > from client to cluster in both docker mode and process mode. That is, > Flink's cache distribution and Beam's artifact staging service work > together in docker mode. > > > > Do we want to implement two different ways of staging artifacts? It seems > sensible to use the same artifact staging functionality also for the > process-based execution. > > I agree that the implementation will be simple if we use the same artifact > staging functionality also for the process-based execution. However, it's > not the best for performance as it will introduce an additional network > transmission, as in process mode TaskManager and python worker share the > same environment, in which case the user files in Flink Distribute Cache > can be accessed by python worker directly. We do not need the staging > service in this case. > > > Apart from being simpler, this would also allow the process-based > execution to run in other environments than the Flink TaskManager > environment. > > IMHO, this case is more like docker mode, and we can share or reuse the > code of Beam docker mode. Furthermore, in this case python worker is > launched by the operator, so it is always in the same environment as the > operator. > > Thanks again for your feedback, and it is valuable for find out the final > best architecture. > > Feel free to correct me if there is anything incorrect. > > Best, > Jincheng > > Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: > > > I'm also late to the party here :) When I saw the first draft, I was > > thinking how exactly the design doc would tie in with Beam. Thanks for > > the update. > > > > A couple of comments with this regard: > > > > > Flink has provided a distributed cache mechanism and allows users to > > upload their files using "registerCachedFile" method in > > ExecutionEnvironment/StreamExecutionEnvironment. The python files users > > specified through "add_python_file", "set_python_requirements" and > > "add_python_archive" are also uploaded through this method eventually. > > > > For process-based execution we use Flink's cache distribution instead of > > Beam's artifact staging. > > > > > Apache Beam Portability Framework already supports artifact staging > that > > works out of the box with the Docker environment. We can use the artifact > > staging service defined in Apache Beam to transfer the dependencies from > > the operator to Python SDK harness running in the docker container. > > > > Do we want to implement two different ways of staging artifacts? It > > seems sensible to use the same artifact staging functionality also for > > the process-based execution. Apart from being simpler, this would also > > allow the process-based execution to run in other environments than the > > Flink TaskManager environment. > > > > Thanks, > > Max > > > > On 15.10.19 11:13, Wei Zhong wrote: > > > Hi Thomas, > > > > > > Thanks a lot for your suggestion! > > > > > > As you can see from the section "Goals" that this FLIP focuses on the > > dependency management in process mode. However, the APIs and design > > proposed in this FLIP also applies for the docker mode. So it makes sense > > to me to also describe how this design is integated to the artifact > staging > > service of Apache Beam in docker mode. I have updated the design doc and > > looking forward to your feedback. > > > > > > Thanks, > > > Wei > > > > > >> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: > > >> > > >> Sorry for joining the discussion late. > > >> > > >> The Beam environment already supports artifact staging, it works out > of > > the > > >> box with the Docker environment. I think it would be helpful to > explain > > in > > >> the FLIP how this proposal relates to what Beam offers / how it would > be > > >> integrated. > > >> > > >> Thanks, > > >> Thomas > > >> > > >> > > >> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> wrote: > > >> > > >>> +1 > > >>> > > >>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: > > >>> > > >>>> +1 > > >>>> > > >>>> Good job, Wei! > > >>>> > > >>>> Best, Hequn > > >>>> > > >>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> > > wrote: > > >>>> > > >>>>> Hi Wei, > > >>>>> > > >>>>> +1 (non-binding). Thanks for driving this. > > >>>>> > > >>>>> Thanks, > > >>>>> Dian > > >>>>> > > >>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> 写道: > > >>>>>> > > >>>>>> +1 > > >>>>>> > > >>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > > >>>>>> > > >>>>>>> Hi all, > > >>>>>>> > > >>>>>>> I would like to start the vote for FLIP-78[1] which is discussed > > and > > >>>>>>> reached consensus in the discussion thread[2]. > > >>>>>>> > > >>>>>>> The vote will be open for at least 72 hours. I'll try to close it > > by > > >>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not enough > > >>>> votes. > > >>>>>>> > > >>>>>>> Thanks, > > >>>>>>> Wei > > >>>>>>> > > >>>>>>> [1] > > >>>>>>> > > >>>>> > > >>>> > > >>> > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > > >>>>>>> < > > >>>>>>> > > >>>>> > > >>>> > > >>> > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > > >>>>>>>> > > >>>>>>> [2] > > >>>>>>> > > >>>>> > > >>>> > > >>> > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > >>>>>>> < > > >>>>>>> > > >>>>> > > >>>> > > >>> > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > >>>>>>>> > > >>>>>>> > > >>>>>>> > > >>>>>>> > > >>>>> > > >>>>> > > >>>> > > >>> > > >>> > > >>> -- > > >>> Best Regards > > >>> > > >>> Jeff Zhang > > >>> > > > > > > |
Hi Thomas,
Thanks for sharing your thoughts. I think improve and solve the limitations of the Beam artifact staging is good topic(For beam). As I understand it as follows: For Beam(data): Stage1: BeamClient ------> JobService (data will be upload to DFS). Stage2: JobService(FlinkClient) ------> FlinkJob (operator download the data from DFS) Stage3: Operator ------> Harness(artifact staging service) For Flink(data): Stage1: FlinkClient(data(local) upload to BlobServer using distribute cache) ------> Operator (data will be download from BlobServer). Do not have to depend on DFS. Stage2: Operator ------> Harness(for docker we using artifact staging service) So, I think Beam have to depend on DFS in Stage1. and Stage2 can using distribute cache if we remove the dependency of DFS for Beam in Stage1.(Of course we need more detail here), we can bring up the discussion in a separate Beam dev@ ML, the current discussion focuses on Flink 1.10 version of UDF Environment and Dependency Management for python, so I recommend voting in the current ML for Flink 1.10, Beam artifact staging improvements are discussed in a separate Beam dev@. What do you think? Best, Jincheng Thomas Weise <[hidden email]> 于2019年10月21日周一 下午10:25写道: > Beam artifact staging currently relies on shared file system and there are > limitations, for example when running locally with Docker and local FS. It > sounds like a distributed cache based implementation might be a good > (better?) option for artifact staging even for the Beam Flink runner? > > If so, can the implementation you propose be compatible with the Beam > artifact staging service so that it can be plugged into the Beam Flink > runner? > > Thanks, > Thomas > > > On Mon, Oct 21, 2019 at 2:34 AM jincheng sun <[hidden email]> > wrote: > > > Hi Max, > > > > Sorry for the late reply. Regarding the issue you mentioned above, I'm > glad > > to share my thoughts: > > > > > For process-based execution we use Flink's cache distribution instead > of > > Beam's artifact staging. > > > > In current design, we use Flink's cache distribution to upload users' > files > > from client to cluster in both docker mode and process mode. That is, > > Flink's cache distribution and Beam's artifact staging service work > > together in docker mode. > > > > > > > Do we want to implement two different ways of staging artifacts? It > seems > > sensible to use the same artifact staging functionality also for the > > process-based execution. > > > > I agree that the implementation will be simple if we use the same > artifact > > staging functionality also for the process-based execution. However, it's > > not the best for performance as it will introduce an additional network > > transmission, as in process mode TaskManager and python worker share the > > same environment, in which case the user files in Flink Distribute Cache > > can be accessed by python worker directly. We do not need the staging > > service in this case. > > > > > Apart from being simpler, this would also allow the process-based > > execution to run in other environments than the Flink TaskManager > > environment. > > > > IMHO, this case is more like docker mode, and we can share or reuse the > > code of Beam docker mode. Furthermore, in this case python worker is > > launched by the operator, so it is always in the same environment as the > > operator. > > > > Thanks again for your feedback, and it is valuable for find out the final > > best architecture. > > > > Feel free to correct me if there is anything incorrect. > > > > Best, > > Jincheng > > > > Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: > > > > > I'm also late to the party here :) When I saw the first draft, I was > > > thinking how exactly the design doc would tie in with Beam. Thanks for > > > the update. > > > > > > A couple of comments with this regard: > > > > > > > Flink has provided a distributed cache mechanism and allows users to > > > upload their files using "registerCachedFile" method in > > > ExecutionEnvironment/StreamExecutionEnvironment. The python files users > > > specified through "add_python_file", "set_python_requirements" and > > > "add_python_archive" are also uploaded through this method eventually. > > > > > > For process-based execution we use Flink's cache distribution instead > of > > > Beam's artifact staging. > > > > > > > Apache Beam Portability Framework already supports artifact staging > > that > > > works out of the box with the Docker environment. We can use the > artifact > > > staging service defined in Apache Beam to transfer the dependencies > from > > > the operator to Python SDK harness running in the docker container. > > > > > > Do we want to implement two different ways of staging artifacts? It > > > seems sensible to use the same artifact staging functionality also for > > > the process-based execution. Apart from being simpler, this would also > > > allow the process-based execution to run in other environments than the > > > Flink TaskManager environment. > > > > > > Thanks, > > > Max > > > > > > On 15.10.19 11:13, Wei Zhong wrote: > > > > Hi Thomas, > > > > > > > > Thanks a lot for your suggestion! > > > > > > > > As you can see from the section "Goals" that this FLIP focuses on the > > > dependency management in process mode. However, the APIs and design > > > proposed in this FLIP also applies for the docker mode. So it makes > sense > > > to me to also describe how this design is integated to the artifact > > staging > > > service of Apache Beam in docker mode. I have updated the design doc > and > > > looking forward to your feedback. > > > > > > > > Thanks, > > > > Wei > > > > > > > >> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: > > > >> > > > >> Sorry for joining the discussion late. > > > >> > > > >> The Beam environment already supports artifact staging, it works out > > of > > > the > > > >> box with the Docker environment. I think it would be helpful to > > explain > > > in > > > >> the FLIP how this proposal relates to what Beam offers / how it > would > > be > > > >> integrated. > > > >> > > > >> Thanks, > > > >> Thomas > > > >> > > > >> > > > >> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> > wrote: > > > >> > > > >>> +1 > > > >>> > > > >>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: > > > >>> > > > >>>> +1 > > > >>>> > > > >>>> Good job, Wei! > > > >>>> > > > >>>> Best, Hequn > > > >>>> > > > >>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> > > > wrote: > > > >>>> > > > >>>>> Hi Wei, > > > >>>>> > > > >>>>> +1 (non-binding). Thanks for driving this. > > > >>>>> > > > >>>>> Thanks, > > > >>>>> Dian > > > >>>>> > > > >>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> > 写道: > > > >>>>>> > > > >>>>>> +1 > > > >>>>>> > > > >>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > > > >>>>>> > > > >>>>>>> Hi all, > > > >>>>>>> > > > >>>>>>> I would like to start the vote for FLIP-78[1] which is > discussed > > > and > > > >>>>>>> reached consensus in the discussion thread[2]. > > > >>>>>>> > > > >>>>>>> The vote will be open for at least 72 hours. I'll try to close > it > > > by > > > >>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not > enough > > > >>>> votes. > > > >>>>>>> > > > >>>>>>> Thanks, > > > >>>>>>> Wei > > > >>>>>>> > > > >>>>>>> [1] > > > >>>>>>> > > > >>>>> > > > >>>> > > > >>> > > > > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > > > >>>>>>> < > > > >>>>>>> > > > >>>>> > > > >>>> > > > >>> > > > > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > > > >>>>>>>> > > > >>>>>>> [2] > > > >>>>>>> > > > >>>>> > > > >>>> > > > >>> > > > > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > >>>>>>> < > > > >>>>>>> > > > >>>>> > > > >>>> > > > >>> > > > > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > >>>>>>>> > > > >>>>>>> > > > >>>>>>> > > > >>>>>>> > > > >>>>> > > > >>>>> > > > >>>> > > > >>> > > > >>> > > > >>> -- > > > >>> Best Regards > > > >>> > > > >>> Jeff Zhang > > > >>> > > > > > > > > > > |
Hi Jincheng,
Yes, this topic can be further discussed on the Beam ML. The only reason I brought it up here is that it would be desirable from Beam Flink runner perspective for the artifact staging mechanism that you work on to be reusable. Stage 1 in Beam is also up to the runner, artifact staging is a service discovered from the job server and that the Flink job server currently uses DFS is not set in stone. My interest was more regarding assumptions regarding the artifact structure, which may or may not allow for reusable implementation. +1 for the proposal otherwise Thomas On Mon, Oct 21, 2019 at 8:40 PM jincheng sun <[hidden email]> wrote: > Hi Thomas, > > Thanks for sharing your thoughts. I think improve and solve the limitations > of the Beam artifact staging is good topic(For beam). > > As I understand it as follows: > > For Beam(data): > Stage1: BeamClient ------> JobService (data will be upload to DFS). > Stage2: JobService(FlinkClient) ------> FlinkJob (operator download > the data from DFS) > Stage3: Operator ------> Harness(artifact staging service) > > For Flink(data): > Stage1: FlinkClient(data(local) upload to BlobServer using distribute > cache) ------> Operator (data will be download from BlobServer). Do not > have to depend on DFS. > Stage2: Operator ------> Harness(for docker we using artifact staging > service) > > So, I think Beam have to depend on DFS in Stage1. and Stage2 can using > distribute cache if we remove the dependency of DFS for Beam in Stage1.(Of > course we need more detail here), we can bring up the discussion in a > separate Beam dev@ ML, the current discussion focuses on Flink 1.10 > version > of UDF Environment and Dependency Management for python, so I recommend > voting in the current ML for Flink 1.10, Beam artifact staging improvements > are discussed in a separate Beam dev@. > > What do you think? > > Best, > Jincheng > > Thomas Weise <[hidden email]> 于2019年10月21日周一 下午10:25写道: > > > Beam artifact staging currently relies on shared file system and there > are > > limitations, for example when running locally with Docker and local FS. > It > > sounds like a distributed cache based implementation might be a good > > (better?) option for artifact staging even for the Beam Flink runner? > > > > If so, can the implementation you propose be compatible with the Beam > > artifact staging service so that it can be plugged into the Beam Flink > > runner? > > > > Thanks, > > Thomas > > > > > > On Mon, Oct 21, 2019 at 2:34 AM jincheng sun <[hidden email]> > > wrote: > > > > > Hi Max, > > > > > > Sorry for the late reply. Regarding the issue you mentioned above, I'm > > glad > > > to share my thoughts: > > > > > > > For process-based execution we use Flink's cache distribution instead > > of > > > Beam's artifact staging. > > > > > > In current design, we use Flink's cache distribution to upload users' > > files > > > from client to cluster in both docker mode and process mode. That is, > > > Flink's cache distribution and Beam's artifact staging service work > > > together in docker mode. > > > > > > > > > > Do we want to implement two different ways of staging artifacts? It > > seems > > > sensible to use the same artifact staging functionality also for the > > > process-based execution. > > > > > > I agree that the implementation will be simple if we use the same > > artifact > > > staging functionality also for the process-based execution. However, > it's > > > not the best for performance as it will introduce an additional network > > > transmission, as in process mode TaskManager and python worker share > the > > > same environment, in which case the user files in Flink Distribute > Cache > > > can be accessed by python worker directly. We do not need the staging > > > service in this case. > > > > > > > Apart from being simpler, this would also allow the process-based > > > execution to run in other environments than the Flink TaskManager > > > environment. > > > > > > IMHO, this case is more like docker mode, and we can share or reuse the > > > code of Beam docker mode. Furthermore, in this case python worker is > > > launched by the operator, so it is always in the same environment as > the > > > operator. > > > > > > Thanks again for your feedback, and it is valuable for find out the > final > > > best architecture. > > > > > > Feel free to correct me if there is anything incorrect. > > > > > > Best, > > > Jincheng > > > > > > Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: > > > > > > > I'm also late to the party here :) When I saw the first draft, I was > > > > thinking how exactly the design doc would tie in with Beam. Thanks > for > > > > the update. > > > > > > > > A couple of comments with this regard: > > > > > > > > > Flink has provided a distributed cache mechanism and allows users > to > > > > upload their files using "registerCachedFile" method in > > > > ExecutionEnvironment/StreamExecutionEnvironment. The python files > users > > > > specified through "add_python_file", "set_python_requirements" and > > > > "add_python_archive" are also uploaded through this method > eventually. > > > > > > > > For process-based execution we use Flink's cache distribution instead > > of > > > > Beam's artifact staging. > > > > > > > > > Apache Beam Portability Framework already supports artifact staging > > > that > > > > works out of the box with the Docker environment. We can use the > > artifact > > > > staging service defined in Apache Beam to transfer the dependencies > > from > > > > the operator to Python SDK harness running in the docker container. > > > > > > > > Do we want to implement two different ways of staging artifacts? It > > > > seems sensible to use the same artifact staging functionality also > for > > > > the process-based execution. Apart from being simpler, this would > also > > > > allow the process-based execution to run in other environments than > the > > > > Flink TaskManager environment. > > > > > > > > Thanks, > > > > Max > > > > > > > > On 15.10.19 11:13, Wei Zhong wrote: > > > > > Hi Thomas, > > > > > > > > > > Thanks a lot for your suggestion! > > > > > > > > > > As you can see from the section "Goals" that this FLIP focuses on > the > > > > dependency management in process mode. However, the APIs and design > > > > proposed in this FLIP also applies for the docker mode. So it makes > > sense > > > > to me to also describe how this design is integated to the artifact > > > staging > > > > service of Apache Beam in docker mode. I have updated the design doc > > and > > > > looking forward to your feedback. > > > > > > > > > > Thanks, > > > > > Wei > > > > > > > > > >> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: > > > > >> > > > > >> Sorry for joining the discussion late. > > > > >> > > > > >> The Beam environment already supports artifact staging, it works > out > > > of > > > > the > > > > >> box with the Docker environment. I think it would be helpful to > > > explain > > > > in > > > > >> the FLIP how this proposal relates to what Beam offers / how it > > would > > > be > > > > >> integrated. > > > > >> > > > > >> Thanks, > > > > >> Thomas > > > > >> > > > > >> > > > > >> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> > > wrote: > > > > >> > > > > >>> +1 > > > > >>> > > > > >>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: > > > > >>> > > > > >>>> +1 > > > > >>>> > > > > >>>> Good job, Wei! > > > > >>>> > > > > >>>> Best, Hequn > > > > >>>> > > > > >>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu <[hidden email]> > > > > wrote: > > > > >>>> > > > > >>>>> Hi Wei, > > > > >>>>> > > > > >>>>> +1 (non-binding). Thanks for driving this. > > > > >>>>> > > > > >>>>> Thanks, > > > > >>>>> Dian > > > > >>>>> > > > > >>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email]> > > 写道: > > > > >>>>>> > > > > >>>>>> +1 > > > > >>>>>> > > > > >>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > > > > >>>>>> > > > > >>>>>>> Hi all, > > > > >>>>>>> > > > > >>>>>>> I would like to start the vote for FLIP-78[1] which is > > discussed > > > > and > > > > >>>>>>> reached consensus in the discussion thread[2]. > > > > >>>>>>> > > > > >>>>>>> The vote will be open for at least 72 hours. I'll try to > close > > it > > > > by > > > > >>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not > > enough > > > > >>>> votes. > > > > >>>>>>> > > > > >>>>>>> Thanks, > > > > >>>>>>> Wei > > > > >>>>>>> > > > > >>>>>>> [1] > > > > >>>>>>> > > > > >>>>> > > > > >>>> > > > > >>> > > > > > > > > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > > > > >>>>>>> < > > > > >>>>>>> > > > > >>>>> > > > > >>>> > > > > >>> > > > > > > > > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > > > > >>>>>>>> > > > > >>>>>>> [2] > > > > >>>>>>> > > > > >>>>> > > > > >>>> > > > > >>> > > > > > > > > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > > >>>>>>> < > > > > >>>>>>> > > > > >>>>> > > > > >>>> > > > > >>> > > > > > > > > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > > >>>>>>>> > > > > >>>>>>> > > > > >>>>>>> > > > > >>>>>>> > > > > >>>>> > > > > >>>>> > > > > >>>> > > > > >>> > > > > >>> > > > > >>> -- > > > > >>> Best Regards > > > > >>> > > > > >>> Jeff Zhang > > > > >>> > > > > > > > > > > > > > > > |
Hi Thomas,
Thanks for your explanation. I understand your original intention. I will seriously consider this issue. After I have the initial solution, I will bring up a further discussion in Beam ML. Thanks for your voting. :) Best, Jincheng Thomas Weise <[hidden email]> 于2019年10月25日周五 上午7:32写道: > Hi Jincheng, > > Yes, this topic can be further discussed on the Beam ML. The only reason I > brought it up here is that it would be desirable from Beam Flink runner > perspective for the artifact staging mechanism that you work on to be > reusable. > > Stage 1 in Beam is also up to the runner, artifact staging is a service > discovered from the job server and that the Flink job server currently uses > DFS is not set in stone. My interest was more regarding assumptions > regarding the artifact structure, which may or may not allow for reusable > implementation. > > +1 for the proposal otherwise > > Thomas > > > On Mon, Oct 21, 2019 at 8:40 PM jincheng sun <[hidden email]> > wrote: > > > Hi Thomas, > > > > Thanks for sharing your thoughts. I think improve and solve the > limitations > > of the Beam artifact staging is good topic(For beam). > > > > As I understand it as follows: > > > > For Beam(data): > > Stage1: BeamClient ------> JobService (data will be upload to DFS). > > Stage2: JobService(FlinkClient) ------> FlinkJob (operator download > > the data from DFS) > > Stage3: Operator ------> Harness(artifact staging service) > > > > For Flink(data): > > Stage1: FlinkClient(data(local) upload to BlobServer using distribute > > cache) ------> Operator (data will be download from BlobServer). Do not > > have to depend on DFS. > > Stage2: Operator ------> Harness(for docker we using artifact staging > > service) > > > > So, I think Beam have to depend on DFS in Stage1. and Stage2 can using > > distribute cache if we remove the dependency of DFS for Beam in > Stage1.(Of > > course we need more detail here), we can bring up the discussion in a > > separate Beam dev@ ML, the current discussion focuses on Flink 1.10 > > version > > of UDF Environment and Dependency Management for python, so I recommend > > voting in the current ML for Flink 1.10, Beam artifact staging > improvements > > are discussed in a separate Beam dev@. > > > > What do you think? > > > > Best, > > Jincheng > > > > Thomas Weise <[hidden email]> 于2019年10月21日周一 下午10:25写道: > > > > > Beam artifact staging currently relies on shared file system and there > > are > > > limitations, for example when running locally with Docker and local FS. > > It > > > sounds like a distributed cache based implementation might be a good > > > (better?) option for artifact staging even for the Beam Flink runner? > > > > > > If so, can the implementation you propose be compatible with the Beam > > > artifact staging service so that it can be plugged into the Beam Flink > > > runner? > > > > > > Thanks, > > > Thomas > > > > > > > > > On Mon, Oct 21, 2019 at 2:34 AM jincheng sun <[hidden email] > > > > > wrote: > > > > > > > Hi Max, > > > > > > > > Sorry for the late reply. Regarding the issue you mentioned above, > I'm > > > glad > > > > to share my thoughts: > > > > > > > > > For process-based execution we use Flink's cache distribution > instead > > > of > > > > Beam's artifact staging. > > > > > > > > In current design, we use Flink's cache distribution to upload users' > > > files > > > > from client to cluster in both docker mode and process mode. That is, > > > > Flink's cache distribution and Beam's artifact staging service work > > > > together in docker mode. > > > > > > > > > > > > > Do we want to implement two different ways of staging artifacts? It > > > seems > > > > sensible to use the same artifact staging functionality also for the > > > > process-based execution. > > > > > > > > I agree that the implementation will be simple if we use the same > > > artifact > > > > staging functionality also for the process-based execution. However, > > it's > > > > not the best for performance as it will introduce an additional > network > > > > transmission, as in process mode TaskManager and python worker share > > the > > > > same environment, in which case the user files in Flink Distribute > > Cache > > > > can be accessed by python worker directly. We do not need the staging > > > > service in this case. > > > > > > > > > Apart from being simpler, this would also allow the process-based > > > > execution to run in other environments than the Flink TaskManager > > > > environment. > > > > > > > > IMHO, this case is more like docker mode, and we can share or reuse > the > > > > code of Beam docker mode. Furthermore, in this case python worker is > > > > launched by the operator, so it is always in the same environment as > > the > > > > operator. > > > > > > > > Thanks again for your feedback, and it is valuable for find out the > > final > > > > best architecture. > > > > > > > > Feel free to correct me if there is anything incorrect. > > > > > > > > Best, > > > > Jincheng > > > > > > > > Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: > > > > > > > > > I'm also late to the party here :) When I saw the first draft, I > was > > > > > thinking how exactly the design doc would tie in with Beam. Thanks > > for > > > > > the update. > > > > > > > > > > A couple of comments with this regard: > > > > > > > > > > > Flink has provided a distributed cache mechanism and allows users > > to > > > > > upload their files using "registerCachedFile" method in > > > > > ExecutionEnvironment/StreamExecutionEnvironment. The python files > > users > > > > > specified through "add_python_file", "set_python_requirements" and > > > > > "add_python_archive" are also uploaded through this method > > eventually. > > > > > > > > > > For process-based execution we use Flink's cache distribution > instead > > > of > > > > > Beam's artifact staging. > > > > > > > > > > > Apache Beam Portability Framework already supports artifact > staging > > > > that > > > > > works out of the box with the Docker environment. We can use the > > > artifact > > > > > staging service defined in Apache Beam to transfer the dependencies > > > from > > > > > the operator to Python SDK harness running in the docker container. > > > > > > > > > > Do we want to implement two different ways of staging artifacts? It > > > > > seems sensible to use the same artifact staging functionality also > > for > > > > > the process-based execution. Apart from being simpler, this would > > also > > > > > allow the process-based execution to run in other environments than > > the > > > > > Flink TaskManager environment. > > > > > > > > > > Thanks, > > > > > Max > > > > > > > > > > On 15.10.19 11:13, Wei Zhong wrote: > > > > > > Hi Thomas, > > > > > > > > > > > > Thanks a lot for your suggestion! > > > > > > > > > > > > As you can see from the section "Goals" that this FLIP focuses on > > the > > > > > dependency management in process mode. However, the APIs and design > > > > > proposed in this FLIP also applies for the docker mode. So it makes > > > sense > > > > > to me to also describe how this design is integated to the artifact > > > > staging > > > > > service of Apache Beam in docker mode. I have updated the design > doc > > > and > > > > > looking forward to your feedback. > > > > > > > > > > > > Thanks, > > > > > > Wei > > > > > > > > > > > >> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: > > > > > >> > > > > > >> Sorry for joining the discussion late. > > > > > >> > > > > > >> The Beam environment already supports artifact staging, it works > > out > > > > of > > > > > the > > > > > >> box with the Docker environment. I think it would be helpful to > > > > explain > > > > > in > > > > > >> the FLIP how this proposal relates to what Beam offers / how it > > > would > > > > be > > > > > >> integrated. > > > > > >> > > > > > >> Thanks, > > > > > >> Thomas > > > > > >> > > > > > >> > > > > > >> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> > > > wrote: > > > > > >> > > > > > >>> +1 > > > > > >>> > > > > > >>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: > > > > > >>> > > > > > >>>> +1 > > > > > >>>> > > > > > >>>> Good job, Wei! > > > > > >>>> > > > > > >>>> Best, Hequn > > > > > >>>> > > > > > >>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu < > [hidden email]> > > > > > wrote: > > > > > >>>> > > > > > >>>>> Hi Wei, > > > > > >>>>> > > > > > >>>>> +1 (non-binding). Thanks for driving this. > > > > > >>>>> > > > > > >>>>> Thanks, > > > > > >>>>> Dian > > > > > >>>>> > > > > > >>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email] > > > > > 写道: > > > > > >>>>>> > > > > > >>>>>> +1 > > > > > >>>>>> > > > > > >>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > > > > > >>>>>> > > > > > >>>>>>> Hi all, > > > > > >>>>>>> > > > > > >>>>>>> I would like to start the vote for FLIP-78[1] which is > > > discussed > > > > > and > > > > > >>>>>>> reached consensus in the discussion thread[2]. > > > > > >>>>>>> > > > > > >>>>>>> The vote will be open for at least 72 hours. I'll try to > > close > > > it > > > > > by > > > > > >>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not > > > enough > > > > > >>>> votes. > > > > > >>>>>>> > > > > > >>>>>>> Thanks, > > > > > >>>>>>> Wei > > > > > >>>>>>> > > > > > >>>>>>> [1] > > > > > >>>>>>> > > > > > >>>>> > > > > > >>>> > > > > > >>> > > > > > > > > > > > > > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > > > > > >>>>>>> < > > > > > >>>>>>> > > > > > >>>>> > > > > > >>>> > > > > > >>> > > > > > > > > > > > > > > > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > > > > > >>>>>>>> > > > > > >>>>>>> [2] > > > > > >>>>>>> > > > > > >>>>> > > > > > >>>> > > > > > >>> > > > > > > > > > > > > > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > > > >>>>>>> < > > > > > >>>>>>> > > > > > >>>>> > > > > > >>>> > > > > > >>> > > > > > > > > > > > > > > > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > > > > > >>>>>>>> > > > > > >>>>>>> > > > > > >>>>>>> > > > > > >>>>>>> > > > > > >>>>> > > > > > >>>>> > > > > > >>>> > > > > > >>> > > > > > >>> > > > > > >>> -- > > > > > >>> Best Regards > > > > > >>> > > > > > >>> Jeff Zhang > > > > > >>> > > > > > > > > > > > > > > > > > > > > > |
Hi Max,
Is there any other concerns from your side? I appreciate if you can give some feedback and vote on this. Best, Wei > 在 2019年10月25日,09:33,jincheng sun <[hidden email]> 写道: > > Hi Thomas, > > Thanks for your explanation. I understand your original intention. I will > seriously consider this issue. After I have the initial solution, I will > bring up a further discussion in Beam ML. > > Thanks for your voting. :) > > Best, > Jincheng > > > Thomas Weise <[hidden email]> 于2019年10月25日周五 上午7:32写道: > >> Hi Jincheng, >> >> Yes, this topic can be further discussed on the Beam ML. The only reason I >> brought it up here is that it would be desirable from Beam Flink runner >> perspective for the artifact staging mechanism that you work on to be >> reusable. >> >> Stage 1 in Beam is also up to the runner, artifact staging is a service >> discovered from the job server and that the Flink job server currently uses >> DFS is not set in stone. My interest was more regarding assumptions >> regarding the artifact structure, which may or may not allow for reusable >> implementation. >> >> +1 for the proposal otherwise >> >> Thomas >> >> >> On Mon, Oct 21, 2019 at 8:40 PM jincheng sun <[hidden email]> >> wrote: >> >>> Hi Thomas, >>> >>> Thanks for sharing your thoughts. I think improve and solve the >> limitations >>> of the Beam artifact staging is good topic(For beam). >>> >>> As I understand it as follows: >>> >>> For Beam(data): >>> Stage1: BeamClient ------> JobService (data will be upload to DFS). >>> Stage2: JobService(FlinkClient) ------> FlinkJob (operator download >>> the data from DFS) >>> Stage3: Operator ------> Harness(artifact staging service) >>> >>> For Flink(data): >>> Stage1: FlinkClient(data(local) upload to BlobServer using distribute >>> cache) ------> Operator (data will be download from BlobServer). Do not >>> have to depend on DFS. >>> Stage2: Operator ------> Harness(for docker we using artifact staging >>> service) >>> >>> So, I think Beam have to depend on DFS in Stage1. and Stage2 can using >>> distribute cache if we remove the dependency of DFS for Beam in >> Stage1.(Of >>> course we need more detail here), we can bring up the discussion in a >>> separate Beam dev@ ML, the current discussion focuses on Flink 1.10 >>> version >>> of UDF Environment and Dependency Management for python, so I recommend >>> voting in the current ML for Flink 1.10, Beam artifact staging >> improvements >>> are discussed in a separate Beam dev@. >>> >>> What do you think? >>> >>> Best, >>> Jincheng >>> >>> Thomas Weise <[hidden email]> 于2019年10月21日周一 下午10:25写道: >>> >>>> Beam artifact staging currently relies on shared file system and there >>> are >>>> limitations, for example when running locally with Docker and local FS. >>> It >>>> sounds like a distributed cache based implementation might be a good >>>> (better?) option for artifact staging even for the Beam Flink runner? >>>> >>>> If so, can the implementation you propose be compatible with the Beam >>>> artifact staging service so that it can be plugged into the Beam Flink >>>> runner? >>>> >>>> Thanks, >>>> Thomas >>>> >>>> >>>> On Mon, Oct 21, 2019 at 2:34 AM jincheng sun <[hidden email] >>> >>>> wrote: >>>> >>>>> Hi Max, >>>>> >>>>> Sorry for the late reply. Regarding the issue you mentioned above, >> I'm >>>> glad >>>>> to share my thoughts: >>>>> >>>>>> For process-based execution we use Flink's cache distribution >> instead >>>> of >>>>> Beam's artifact staging. >>>>> >>>>> In current design, we use Flink's cache distribution to upload users' >>>> files >>>>> from client to cluster in both docker mode and process mode. That is, >>>>> Flink's cache distribution and Beam's artifact staging service work >>>>> together in docker mode. >>>>> >>>>> >>>>>> Do we want to implement two different ways of staging artifacts? It >>>> seems >>>>> sensible to use the same artifact staging functionality also for the >>>>> process-based execution. >>>>> >>>>> I agree that the implementation will be simple if we use the same >>>> artifact >>>>> staging functionality also for the process-based execution. However, >>> it's >>>>> not the best for performance as it will introduce an additional >> network >>>>> transmission, as in process mode TaskManager and python worker share >>> the >>>>> same environment, in which case the user files in Flink Distribute >>> Cache >>>>> can be accessed by python worker directly. We do not need the staging >>>>> service in this case. >>>>> >>>>>> Apart from being simpler, this would also allow the process-based >>>>> execution to run in other environments than the Flink TaskManager >>>>> environment. >>>>> >>>>> IMHO, this case is more like docker mode, and we can share or reuse >> the >>>>> code of Beam docker mode. Furthermore, in this case python worker is >>>>> launched by the operator, so it is always in the same environment as >>> the >>>>> operator. >>>>> >>>>> Thanks again for your feedback, and it is valuable for find out the >>> final >>>>> best architecture. >>>>> >>>>> Feel free to correct me if there is anything incorrect. >>>>> >>>>> Best, >>>>> Jincheng >>>>> >>>>> Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: >>>>> >>>>>> I'm also late to the party here :) When I saw the first draft, I >> was >>>>>> thinking how exactly the design doc would tie in with Beam. Thanks >>> for >>>>>> the update. >>>>>> >>>>>> A couple of comments with this regard: >>>>>> >>>>>>> Flink has provided a distributed cache mechanism and allows users >>> to >>>>>> upload their files using "registerCachedFile" method in >>>>>> ExecutionEnvironment/StreamExecutionEnvironment. The python files >>> users >>>>>> specified through "add_python_file", "set_python_requirements" and >>>>>> "add_python_archive" are also uploaded through this method >>> eventually. >>>>>> >>>>>> For process-based execution we use Flink's cache distribution >> instead >>>> of >>>>>> Beam's artifact staging. >>>>>> >>>>>>> Apache Beam Portability Framework already supports artifact >> staging >>>>> that >>>>>> works out of the box with the Docker environment. We can use the >>>> artifact >>>>>> staging service defined in Apache Beam to transfer the dependencies >>>> from >>>>>> the operator to Python SDK harness running in the docker container. >>>>>> >>>>>> Do we want to implement two different ways of staging artifacts? It >>>>>> seems sensible to use the same artifact staging functionality also >>> for >>>>>> the process-based execution. Apart from being simpler, this would >>> also >>>>>> allow the process-based execution to run in other environments than >>> the >>>>>> Flink TaskManager environment. >>>>>> >>>>>> Thanks, >>>>>> Max >>>>>> >>>>>> On 15.10.19 11:13, Wei Zhong wrote: >>>>>>> Hi Thomas, >>>>>>> >>>>>>> Thanks a lot for your suggestion! >>>>>>> >>>>>>> As you can see from the section "Goals" that this FLIP focuses on >>> the >>>>>> dependency management in process mode. However, the APIs and design >>>>>> proposed in this FLIP also applies for the docker mode. So it makes >>>> sense >>>>>> to me to also describe how this design is integated to the artifact >>>>> staging >>>>>> service of Apache Beam in docker mode. I have updated the design >> doc >>>> and >>>>>> looking forward to your feedback. >>>>>>> >>>>>>> Thanks, >>>>>>> Wei >>>>>>> >>>>>>>> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: >>>>>>>> >>>>>>>> Sorry for joining the discussion late. >>>>>>>> >>>>>>>> The Beam environment already supports artifact staging, it works >>> out >>>>> of >>>>>> the >>>>>>>> box with the Docker environment. I think it would be helpful to >>>>> explain >>>>>> in >>>>>>>> the FLIP how this proposal relates to what Beam offers / how it >>>> would >>>>> be >>>>>>>> integrated. >>>>>>>> >>>>>>>> Thanks, >>>>>>>> Thomas >>>>>>>> >>>>>>>> >>>>>>>> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> >>>> wrote: >>>>>>>> >>>>>>>>> +1 >>>>>>>>> >>>>>>>>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: >>>>>>>>> >>>>>>>>>> +1 >>>>>>>>>> >>>>>>>>>> Good job, Wei! >>>>>>>>>> >>>>>>>>>> Best, Hequn >>>>>>>>>> >>>>>>>>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu < >> [hidden email]> >>>>>> wrote: >>>>>>>>>> >>>>>>>>>>> Hi Wei, >>>>>>>>>>> >>>>>>>>>>> +1 (non-binding). Thanks for driving this. >>>>>>>>>>> >>>>>>>>>>> Thanks, >>>>>>>>>>> Dian >>>>>>>>>>> >>>>>>>>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email] >>> >>>> 写道: >>>>>>>>>>>> >>>>>>>>>>>> +1 >>>>>>>>>>>> >>>>>>>>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: >>>>>>>>>>>> >>>>>>>>>>>>> Hi all, >>>>>>>>>>>>> >>>>>>>>>>>>> I would like to start the vote for FLIP-78[1] which is >>>> discussed >>>>>> and >>>>>>>>>>>>> reached consensus in the discussion thread[2]. >>>>>>>>>>>>> >>>>>>>>>>>>> The vote will be open for at least 72 hours. I'll try to >>> close >>>> it >>>>>> by >>>>>>>>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not >>>> enough >>>>>>>>>> votes. >>>>>>>>>>>>> >>>>>>>>>>>>> Thanks, >>>>>>>>>>>>> Wei >>>>>>>>>>>>> >>>>>>>>>>>>> [1] >>>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>> >>>>> >>>> >>> >> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>>>>>>> < >>>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>> >>>>> >>>> >>> >> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>>>>>>>> >>>>>>>>>>>>> [2] >>>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>> >>>>> >>>> >>> >> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>>>>>>> < >>>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>> >>>>> >>>> >>> >> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>>>>> >>>>>>>>> -- >>>>>>>>> Best Regards >>>>>>>>> >>>>>>>>> Jeff Zhang >>>>>>>>> >>>>>>> >>>>>> >>>>> >>>> >>> >> |
Hi Wei, hi Jincheng,
+1 on the current approach. I agree it would be nice to allow for the Beam artifact staging to use Flink's BlobServer. However, the current implementation which uses the distributed file system is more generic, since the BlobServer is only available on the TaskManager and not necessarily inside Harness containers (Stage 3). So for stage 1 (Client <=> JobServer) we could certainly use the BlobServer. Stage 2 (Flink job submission) already uses it, and Stage 3 (container setup) probably has to have some form of distributed file system or directory which has been populated with the dependencies. Thanks, Max On 25.10.19 03:45, Wei Zhong wrote: > Hi Max, > > Is there any other concerns from your side? I appreciate if you can give some feedback and vote on this. > > Best, > Wei > >> 在 2019年10月25日,09:33,jincheng sun <[hidden email]> 写道: >> >> Hi Thomas, >> >> Thanks for your explanation. I understand your original intention. I will >> seriously consider this issue. After I have the initial solution, I will >> bring up a further discussion in Beam ML. >> >> Thanks for your voting. :) >> >> Best, >> Jincheng >> >> >> Thomas Weise <[hidden email]> 于2019年10月25日周五 上午7:32写道: >> >>> Hi Jincheng, >>> >>> Yes, this topic can be further discussed on the Beam ML. The only reason I >>> brought it up here is that it would be desirable from Beam Flink runner >>> perspective for the artifact staging mechanism that you work on to be >>> reusable. >>> >>> Stage 1 in Beam is also up to the runner, artifact staging is a service >>> discovered from the job server and that the Flink job server currently uses >>> DFS is not set in stone. My interest was more regarding assumptions >>> regarding the artifact structure, which may or may not allow for reusable >>> implementation. >>> >>> +1 for the proposal otherwise >>> >>> Thomas >>> >>> >>> On Mon, Oct 21, 2019 at 8:40 PM jincheng sun <[hidden email]> >>> wrote: >>> >>>> Hi Thomas, >>>> >>>> Thanks for sharing your thoughts. I think improve and solve the >>> limitations >>>> of the Beam artifact staging is good topic(For beam). >>>> >>>> As I understand it as follows: >>>> >>>> For Beam(data): >>>> Stage1: BeamClient ------> JobService (data will be upload to DFS). >>>> Stage2: JobService(FlinkClient) ------> FlinkJob (operator download >>>> the data from DFS) >>>> Stage3: Operator ------> Harness(artifact staging service) >>>> >>>> For Flink(data): >>>> Stage1: FlinkClient(data(local) upload to BlobServer using distribute >>>> cache) ------> Operator (data will be download from BlobServer). Do not >>>> have to depend on DFS. >>>> Stage2: Operator ------> Harness(for docker we using artifact staging >>>> service) >>>> >>>> So, I think Beam have to depend on DFS in Stage1. and Stage2 can using >>>> distribute cache if we remove the dependency of DFS for Beam in >>> Stage1.(Of >>>> course we need more detail here), we can bring up the discussion in a >>>> separate Beam dev@ ML, the current discussion focuses on Flink 1.10 >>>> version >>>> of UDF Environment and Dependency Management for python, so I recommend >>>> voting in the current ML for Flink 1.10, Beam artifact staging >>> improvements >>>> are discussed in a separate Beam dev@. >>>> >>>> What do you think? >>>> >>>> Best, >>>> Jincheng >>>> >>>> Thomas Weise <[hidden email]> 于2019年10月21日周一 下午10:25写道: >>>> >>>>> Beam artifact staging currently relies on shared file system and there >>>> are >>>>> limitations, for example when running locally with Docker and local FS. >>>> It >>>>> sounds like a distributed cache based implementation might be a good >>>>> (better?) option for artifact staging even for the Beam Flink runner? >>>>> >>>>> If so, can the implementation you propose be compatible with the Beam >>>>> artifact staging service so that it can be plugged into the Beam Flink >>>>> runner? >>>>> >>>>> Thanks, >>>>> Thomas >>>>> >>>>> >>>>> On Mon, Oct 21, 2019 at 2:34 AM jincheng sun <[hidden email] >>>> >>>>> wrote: >>>>> >>>>>> Hi Max, >>>>>> >>>>>> Sorry for the late reply. Regarding the issue you mentioned above, >>> I'm >>>>> glad >>>>>> to share my thoughts: >>>>>> >>>>>>> For process-based execution we use Flink's cache distribution >>> instead >>>>> of >>>>>> Beam's artifact staging. >>>>>> >>>>>> In current design, we use Flink's cache distribution to upload users' >>>>> files >>>>>> from client to cluster in both docker mode and process mode. That is, >>>>>> Flink's cache distribution and Beam's artifact staging service work >>>>>> together in docker mode. >>>>>> >>>>>> >>>>>>> Do we want to implement two different ways of staging artifacts? It >>>>> seems >>>>>> sensible to use the same artifact staging functionality also for the >>>>>> process-based execution. >>>>>> >>>>>> I agree that the implementation will be simple if we use the same >>>>> artifact >>>>>> staging functionality also for the process-based execution. However, >>>> it's >>>>>> not the best for performance as it will introduce an additional >>> network >>>>>> transmission, as in process mode TaskManager and python worker share >>>> the >>>>>> same environment, in which case the user files in Flink Distribute >>>> Cache >>>>>> can be accessed by python worker directly. We do not need the staging >>>>>> service in this case. >>>>>> >>>>>>> Apart from being simpler, this would also allow the process-based >>>>>> execution to run in other environments than the Flink TaskManager >>>>>> environment. >>>>>> >>>>>> IMHO, this case is more like docker mode, and we can share or reuse >>> the >>>>>> code of Beam docker mode. Furthermore, in this case python worker is >>>>>> launched by the operator, so it is always in the same environment as >>>> the >>>>>> operator. >>>>>> >>>>>> Thanks again for your feedback, and it is valuable for find out the >>>> final >>>>>> best architecture. >>>>>> >>>>>> Feel free to correct me if there is anything incorrect. >>>>>> >>>>>> Best, >>>>>> Jincheng >>>>>> >>>>>> Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: >>>>>> >>>>>>> I'm also late to the party here :) When I saw the first draft, I >>> was >>>>>>> thinking how exactly the design doc would tie in with Beam. Thanks >>>> for >>>>>>> the update. >>>>>>> >>>>>>> A couple of comments with this regard: >>>>>>> >>>>>>>> Flink has provided a distributed cache mechanism and allows users >>>> to >>>>>>> upload their files using "registerCachedFile" method in >>>>>>> ExecutionEnvironment/StreamExecutionEnvironment. The python files >>>> users >>>>>>> specified through "add_python_file", "set_python_requirements" and >>>>>>> "add_python_archive" are also uploaded through this method >>>> eventually. >>>>>>> >>>>>>> For process-based execution we use Flink's cache distribution >>> instead >>>>> of >>>>>>> Beam's artifact staging. >>>>>>> >>>>>>>> Apache Beam Portability Framework already supports artifact >>> staging >>>>>> that >>>>>>> works out of the box with the Docker environment. We can use the >>>>> artifact >>>>>>> staging service defined in Apache Beam to transfer the dependencies >>>>> from >>>>>>> the operator to Python SDK harness running in the docker container. >>>>>>> >>>>>>> Do we want to implement two different ways of staging artifacts? It >>>>>>> seems sensible to use the same artifact staging functionality also >>>> for >>>>>>> the process-based execution. Apart from being simpler, this would >>>> also >>>>>>> allow the process-based execution to run in other environments than >>>> the >>>>>>> Flink TaskManager environment. >>>>>>> >>>>>>> Thanks, >>>>>>> Max >>>>>>> >>>>>>> On 15.10.19 11:13, Wei Zhong wrote: >>>>>>>> Hi Thomas, >>>>>>>> >>>>>>>> Thanks a lot for your suggestion! >>>>>>>> >>>>>>>> As you can see from the section "Goals" that this FLIP focuses on >>>> the >>>>>>> dependency management in process mode. However, the APIs and design >>>>>>> proposed in this FLIP also applies for the docker mode. So it makes >>>>> sense >>>>>>> to me to also describe how this design is integated to the artifact >>>>>> staging >>>>>>> service of Apache Beam in docker mode. I have updated the design >>> doc >>>>> and >>>>>>> looking forward to your feedback. >>>>>>>> >>>>>>>> Thanks, >>>>>>>> Wei >>>>>>>> >>>>>>>>> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: >>>>>>>>> >>>>>>>>> Sorry for joining the discussion late. >>>>>>>>> >>>>>>>>> The Beam environment already supports artifact staging, it works >>>> out >>>>>> of >>>>>>> the >>>>>>>>> box with the Docker environment. I think it would be helpful to >>>>>> explain >>>>>>> in >>>>>>>>> the FLIP how this proposal relates to what Beam offers / how it >>>>> would >>>>>> be >>>>>>>>> integrated. >>>>>>>>> >>>>>>>>> Thanks, >>>>>>>>> Thomas >>>>>>>>> >>>>>>>>> >>>>>>>>> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> >>>>> wrote: >>>>>>>>> >>>>>>>>>> +1 >>>>>>>>>> >>>>>>>>>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: >>>>>>>>>> >>>>>>>>>>> +1 >>>>>>>>>>> >>>>>>>>>>> Good job, Wei! >>>>>>>>>>> >>>>>>>>>>> Best, Hequn >>>>>>>>>>> >>>>>>>>>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu < >>> [hidden email]> >>>>>>> wrote: >>>>>>>>>>> >>>>>>>>>>>> Hi Wei, >>>>>>>>>>>> >>>>>>>>>>>> +1 (non-binding). Thanks for driving this. >>>>>>>>>>>> >>>>>>>>>>>> Thanks, >>>>>>>>>>>> Dian >>>>>>>>>>>> >>>>>>>>>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email] >>>> >>>>> 写道: >>>>>>>>>>>>> >>>>>>>>>>>>> +1 >>>>>>>>>>>>> >>>>>>>>>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: >>>>>>>>>>>>> >>>>>>>>>>>>>> Hi all, >>>>>>>>>>>>>> >>>>>>>>>>>>>> I would like to start the vote for FLIP-78[1] which is >>>>> discussed >>>>>>> and >>>>>>>>>>>>>> reached consensus in the discussion thread[2]. >>>>>>>>>>>>>> >>>>>>>>>>>>>> The vote will be open for at least 72 hours. I'll try to >>>> close >>>>> it >>>>>>> by >>>>>>>>>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not >>>>> enough >>>>>>>>>>> votes. >>>>>>>>>>>>>> >>>>>>>>>>>>>> Thanks, >>>>>>>>>>>>>> Wei >>>>>>>>>>>>>> >>>>>>>>>>>>>> [1] >>>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>> >>>>>> >>>>> >>>> >>> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>>>>>>>> < >>>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>> >>>>>> >>>>> >>>> >>> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>>>>>>>>> >>>>>>>>>>>>>> [2] >>>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>> >>>>>> >>>>> >>>> >>> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>>>>>>>> < >>>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>> >>>>>> >>>>> >>>> >>> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>>>>> >>>>>>>>>> -- >>>>>>>>>> Best Regards >>>>>>>>>> >>>>>>>>>> Jeff Zhang >>>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>>>> >>>> >>> > |
Hi Max,
Thanks for your feedback. You are right, we really need a more generic solution, I volunteer to draft an init solution design doc, and bring up the discussion in Beam @dev ASAP. (Maybe after release of Flink 1.10). Thank you for the voting. Best, Jincheng Maximilian Michels <[hidden email]> 于2019年10月26日周六 上午1:05写道: > Hi Wei, hi Jincheng, > > +1 on the current approach. > > I agree it would be nice to allow for the Beam artifact staging to use > Flink's BlobServer. However, the current implementation which uses the > distributed file system is more generic, since the BlobServer is only > available on the TaskManager and not necessarily inside Harness > containers (Stage 3). > > So for stage 1 (Client <=> JobServer) we could certainly use the > BlobServer. Stage 2 (Flink job submission) already uses it, and Stage 3 > (container setup) probably has to have some form of distributed file > system or directory which has been populated with the dependencies. > > Thanks, > Max > > On 25.10.19 03:45, Wei Zhong wrote: > > Hi Max, > > > > Is there any other concerns from your side? I appreciate if you can give > some feedback and vote on this. > > > > Best, > > Wei > > > >> 在 2019年10月25日,09:33,jincheng sun <[hidden email]> 写道: > >> > >> Hi Thomas, > >> > >> Thanks for your explanation. I understand your original intention. I > will > >> seriously consider this issue. After I have the initial solution, I will > >> bring up a further discussion in Beam ML. > >> > >> Thanks for your voting. :) > >> > >> Best, > >> Jincheng > >> > >> > >> Thomas Weise <[hidden email]> 于2019年10月25日周五 上午7:32写道: > >> > >>> Hi Jincheng, > >>> > >>> Yes, this topic can be further discussed on the Beam ML. The only > reason I > >>> brought it up here is that it would be desirable from Beam Flink runner > >>> perspective for the artifact staging mechanism that you work on to be > >>> reusable. > >>> > >>> Stage 1 in Beam is also up to the runner, artifact staging is a service > >>> discovered from the job server and that the Flink job server currently > uses > >>> DFS is not set in stone. My interest was more regarding assumptions > >>> regarding the artifact structure, which may or may not allow for > reusable > >>> implementation. > >>> > >>> +1 for the proposal otherwise > >>> > >>> Thomas > >>> > >>> > >>> On Mon, Oct 21, 2019 at 8:40 PM jincheng sun <[hidden email] > > > >>> wrote: > >>> > >>>> Hi Thomas, > >>>> > >>>> Thanks for sharing your thoughts. I think improve and solve the > >>> limitations > >>>> of the Beam artifact staging is good topic(For beam). > >>>> > >>>> As I understand it as follows: > >>>> > >>>> For Beam(data): > >>>> Stage1: BeamClient ------> JobService (data will be upload to > DFS). > >>>> Stage2: JobService(FlinkClient) ------> FlinkJob (operator > download > >>>> the data from DFS) > >>>> Stage3: Operator ------> Harness(artifact staging service) > >>>> > >>>> For Flink(data): > >>>> Stage1: FlinkClient(data(local) upload to BlobServer using > distribute > >>>> cache) ------> Operator (data will be download from BlobServer). Do > not > >>>> have to depend on DFS. > >>>> Stage2: Operator ------> Harness(for docker we using artifact > staging > >>>> service) > >>>> > >>>> So, I think Beam have to depend on DFS in Stage1. and Stage2 can using > >>>> distribute cache if we remove the dependency of DFS for Beam in > >>> Stage1.(Of > >>>> course we need more detail here), we can bring up the discussion in a > >>>> separate Beam dev@ ML, the current discussion focuses on Flink 1.10 > >>>> version > >>>> of UDF Environment and Dependency Management for python, so I > recommend > >>>> voting in the current ML for Flink 1.10, Beam artifact staging > >>> improvements > >>>> are discussed in a separate Beam dev@. > >>>> > >>>> What do you think? > >>>> > >>>> Best, > >>>> Jincheng > >>>> > >>>> Thomas Weise <[hidden email]> 于2019年10月21日周一 下午10:25写道: > >>>> > >>>>> Beam artifact staging currently relies on shared file system and > there > >>>> are > >>>>> limitations, for example when running locally with Docker and local > FS. > >>>> It > >>>>> sounds like a distributed cache based implementation might be a good > >>>>> (better?) option for artifact staging even for the Beam Flink runner? > >>>>> > >>>>> If so, can the implementation you propose be compatible with the Beam > >>>>> artifact staging service so that it can be plugged into the Beam > Flink > >>>>> runner? > >>>>> > >>>>> Thanks, > >>>>> Thomas > >>>>> > >>>>> > >>>>> On Mon, Oct 21, 2019 at 2:34 AM jincheng sun < > [hidden email] > >>>> > >>>>> wrote: > >>>>> > >>>>>> Hi Max, > >>>>>> > >>>>>> Sorry for the late reply. Regarding the issue you mentioned above, > >>> I'm > >>>>> glad > >>>>>> to share my thoughts: > >>>>>> > >>>>>>> For process-based execution we use Flink's cache distribution > >>> instead > >>>>> of > >>>>>> Beam's artifact staging. > >>>>>> > >>>>>> In current design, we use Flink's cache distribution to upload > users' > >>>>> files > >>>>>> from client to cluster in both docker mode and process mode. That > is, > >>>>>> Flink's cache distribution and Beam's artifact staging service work > >>>>>> together in docker mode. > >>>>>> > >>>>>> > >>>>>>> Do we want to implement two different ways of staging artifacts? It > >>>>> seems > >>>>>> sensible to use the same artifact staging functionality also for the > >>>>>> process-based execution. > >>>>>> > >>>>>> I agree that the implementation will be simple if we use the same > >>>>> artifact > >>>>>> staging functionality also for the process-based execution. However, > >>>> it's > >>>>>> not the best for performance as it will introduce an additional > >>> network > >>>>>> transmission, as in process mode TaskManager and python worker share > >>>> the > >>>>>> same environment, in which case the user files in Flink Distribute > >>>> Cache > >>>>>> can be accessed by python worker directly. We do not need the > staging > >>>>>> service in this case. > >>>>>> > >>>>>>> Apart from being simpler, this would also allow the process-based > >>>>>> execution to run in other environments than the Flink TaskManager > >>>>>> environment. > >>>>>> > >>>>>> IMHO, this case is more like docker mode, and we can share or reuse > >>> the > >>>>>> code of Beam docker mode. Furthermore, in this case python worker is > >>>>>> launched by the operator, so it is always in the same environment as > >>>> the > >>>>>> operator. > >>>>>> > >>>>>> Thanks again for your feedback, and it is valuable for find out the > >>>> final > >>>>>> best architecture. > >>>>>> > >>>>>> Feel free to correct me if there is anything incorrect. > >>>>>> > >>>>>> Best, > >>>>>> Jincheng > >>>>>> > >>>>>> Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: > >>>>>> > >>>>>>> I'm also late to the party here :) When I saw the first draft, I > >>> was > >>>>>>> thinking how exactly the design doc would tie in with Beam. Thanks > >>>> for > >>>>>>> the update. > >>>>>>> > >>>>>>> A couple of comments with this regard: > >>>>>>> > >>>>>>>> Flink has provided a distributed cache mechanism and allows users > >>>> to > >>>>>>> upload their files using "registerCachedFile" method in > >>>>>>> ExecutionEnvironment/StreamExecutionEnvironment. The python files > >>>> users > >>>>>>> specified through "add_python_file", "set_python_requirements" and > >>>>>>> "add_python_archive" are also uploaded through this method > >>>> eventually. > >>>>>>> > >>>>>>> For process-based execution we use Flink's cache distribution > >>> instead > >>>>> of > >>>>>>> Beam's artifact staging. > >>>>>>> > >>>>>>>> Apache Beam Portability Framework already supports artifact > >>> staging > >>>>>> that > >>>>>>> works out of the box with the Docker environment. We can use the > >>>>> artifact > >>>>>>> staging service defined in Apache Beam to transfer the dependencies > >>>>> from > >>>>>>> the operator to Python SDK harness running in the docker container. > >>>>>>> > >>>>>>> Do we want to implement two different ways of staging artifacts? It > >>>>>>> seems sensible to use the same artifact staging functionality also > >>>> for > >>>>>>> the process-based execution. Apart from being simpler, this would > >>>> also > >>>>>>> allow the process-based execution to run in other environments than > >>>> the > >>>>>>> Flink TaskManager environment. > >>>>>>> > >>>>>>> Thanks, > >>>>>>> Max > >>>>>>> > >>>>>>> On 15.10.19 11:13, Wei Zhong wrote: > >>>>>>>> Hi Thomas, > >>>>>>>> > >>>>>>>> Thanks a lot for your suggestion! > >>>>>>>> > >>>>>>>> As you can see from the section "Goals" that this FLIP focuses on > >>>> the > >>>>>>> dependency management in process mode. However, the APIs and design > >>>>>>> proposed in this FLIP also applies for the docker mode. So it makes > >>>>> sense > >>>>>>> to me to also describe how this design is integated to the artifact > >>>>>> staging > >>>>>>> service of Apache Beam in docker mode. I have updated the design > >>> doc > >>>>> and > >>>>>>> looking forward to your feedback. > >>>>>>>> > >>>>>>>> Thanks, > >>>>>>>> Wei > >>>>>>>> > >>>>>>>>> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: > >>>>>>>>> > >>>>>>>>> Sorry for joining the discussion late. > >>>>>>>>> > >>>>>>>>> The Beam environment already supports artifact staging, it works > >>>> out > >>>>>> of > >>>>>>> the > >>>>>>>>> box with the Docker environment. I think it would be helpful to > >>>>>> explain > >>>>>>> in > >>>>>>>>> the FLIP how this proposal relates to what Beam offers / how it > >>>>> would > >>>>>> be > >>>>>>>>> integrated. > >>>>>>>>> > >>>>>>>>> Thanks, > >>>>>>>>> Thomas > >>>>>>>>> > >>>>>>>>> > >>>>>>>>> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> > >>>>> wrote: > >>>>>>>>> > >>>>>>>>>> +1 > >>>>>>>>>> > >>>>>>>>>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: > >>>>>>>>>> > >>>>>>>>>>> +1 > >>>>>>>>>>> > >>>>>>>>>>> Good job, Wei! > >>>>>>>>>>> > >>>>>>>>>>> Best, Hequn > >>>>>>>>>>> > >>>>>>>>>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu < > >>> [hidden email]> > >>>>>>> wrote: > >>>>>>>>>>> > >>>>>>>>>>>> Hi Wei, > >>>>>>>>>>>> > >>>>>>>>>>>> +1 (non-binding). Thanks for driving this. > >>>>>>>>>>>> > >>>>>>>>>>>> Thanks, > >>>>>>>>>>>> Dian > >>>>>>>>>>>> > >>>>>>>>>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email] > >>>> > >>>>> 写道: > >>>>>>>>>>>>> > >>>>>>>>>>>>> +1 > >>>>>>>>>>>>> > >>>>>>>>>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: > >>>>>>>>>>>>> > >>>>>>>>>>>>>> Hi all, > >>>>>>>>>>>>>> > >>>>>>>>>>>>>> I would like to start the vote for FLIP-78[1] which is > >>>>> discussed > >>>>>>> and > >>>>>>>>>>>>>> reached consensus in the discussion thread[2]. > >>>>>>>>>>>>>> > >>>>>>>>>>>>>> The vote will be open for at least 72 hours. I'll try to > >>>> close > >>>>> it > >>>>>>> by > >>>>>>>>>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not > >>>>> enough > >>>>>>>>>>> votes. > >>>>>>>>>>>>>> > >>>>>>>>>>>>>> Thanks, > >>>>>>>>>>>>>> Wei > >>>>>>>>>>>>>> > >>>>>>>>>>>>>> [1] > >>>>>>>>>>>>>> > >>>>>>>>>>>> > >>>>>>>>>>> > >>>>>>>>>> > >>>>>>> > >>>>>> > >>>>> > >>>> > >>> > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management > >>>>>>>>>>>>>> < > >>>>>>>>>>>>>> > >>>>>>>>>>>> > >>>>>>>>>>> > >>>>>>>>>> > >>>>>>> > >>>>>> > >>>>> > >>>> > >>> > https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management > >>>>>>>>>>>>>>> > >>>>>>>>>>>>>> [2] > >>>>>>>>>>>>>> > >>>>>>>>>>>> > >>>>>>>>>>> > >>>>>>>>>> > >>>>>>> > >>>>>> > >>>>> > >>>> > >>> > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > >>>>>>>>>>>>>> < > >>>>>>>>>>>>>> > >>>>>>>>>>>> > >>>>>>>>>>> > >>>>>>>>>> > >>>>>>> > >>>>>> > >>>>> > >>>> > >>> > http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html > >>>>>>>>>>>>>>> > >>>>>>>>>>>>>> > >>>>>>>>>>>>>> > >>>>>>>>>>>>>> > >>>>>>>>>>>> > >>>>>>>>>>>> > >>>>>>>>>>> > >>>>>>>>>> > >>>>>>>>>> > >>>>>>>>>> -- > >>>>>>>>>> Best Regards > >>>>>>>>>> > >>>>>>>>>> Jeff Zhang > >>>>>>>>>> > >>>>>>>> > >>>>>>> > >>>>>> > >>>>> > >>>> > >>> > > > |
Thanks everyone for the votes!
I’ll summarize the voting result in a separate email. Best, Wei > 在 2019年10月28日,11:38,jincheng sun <[hidden email]> 写道: > > Hi Max, > > Thanks for your feedback. You are right, we really need a more generic > solution, I volunteer to draft an init solution design doc, and bring up > the discussion in Beam @dev ASAP. (Maybe after release of Flink 1.10). > > Thank you for the voting. > > Best, > Jincheng > > Maximilian Michels <[hidden email]> 于2019年10月26日周六 上午1:05写道: > >> Hi Wei, hi Jincheng, >> >> +1 on the current approach. >> >> I agree it would be nice to allow for the Beam artifact staging to use >> Flink's BlobServer. However, the current implementation which uses the >> distributed file system is more generic, since the BlobServer is only >> available on the TaskManager and not necessarily inside Harness >> containers (Stage 3). >> >> So for stage 1 (Client <=> JobServer) we could certainly use the >> BlobServer. Stage 2 (Flink job submission) already uses it, and Stage 3 >> (container setup) probably has to have some form of distributed file >> system or directory which has been populated with the dependencies. >> >> Thanks, >> Max >> >> On 25.10.19 03:45, Wei Zhong wrote: >>> Hi Max, >>> >>> Is there any other concerns from your side? I appreciate if you can give >> some feedback and vote on this. >>> >>> Best, >>> Wei >>> >>>> 在 2019年10月25日,09:33,jincheng sun <[hidden email]> 写道: >>>> >>>> Hi Thomas, >>>> >>>> Thanks for your explanation. I understand your original intention. I >> will >>>> seriously consider this issue. After I have the initial solution, I will >>>> bring up a further discussion in Beam ML. >>>> >>>> Thanks for your voting. :) >>>> >>>> Best, >>>> Jincheng >>>> >>>> >>>> Thomas Weise <[hidden email]> 于2019年10月25日周五 上午7:32写道: >>>> >>>>> Hi Jincheng, >>>>> >>>>> Yes, this topic can be further discussed on the Beam ML. The only >> reason I >>>>> brought it up here is that it would be desirable from Beam Flink runner >>>>> perspective for the artifact staging mechanism that you work on to be >>>>> reusable. >>>>> >>>>> Stage 1 in Beam is also up to the runner, artifact staging is a service >>>>> discovered from the job server and that the Flink job server currently >> uses >>>>> DFS is not set in stone. My interest was more regarding assumptions >>>>> regarding the artifact structure, which may or may not allow for >> reusable >>>>> implementation. >>>>> >>>>> +1 for the proposal otherwise >>>>> >>>>> Thomas >>>>> >>>>> >>>>> On Mon, Oct 21, 2019 at 8:40 PM jincheng sun <[hidden email] >>> >>>>> wrote: >>>>> >>>>>> Hi Thomas, >>>>>> >>>>>> Thanks for sharing your thoughts. I think improve and solve the >>>>> limitations >>>>>> of the Beam artifact staging is good topic(For beam). >>>>>> >>>>>> As I understand it as follows: >>>>>> >>>>>> For Beam(data): >>>>>> Stage1: BeamClient ------> JobService (data will be upload to >> DFS). >>>>>> Stage2: JobService(FlinkClient) ------> FlinkJob (operator >> download >>>>>> the data from DFS) >>>>>> Stage3: Operator ------> Harness(artifact staging service) >>>>>> >>>>>> For Flink(data): >>>>>> Stage1: FlinkClient(data(local) upload to BlobServer using >> distribute >>>>>> cache) ------> Operator (data will be download from BlobServer). Do >> not >>>>>> have to depend on DFS. >>>>>> Stage2: Operator ------> Harness(for docker we using artifact >> staging >>>>>> service) >>>>>> >>>>>> So, I think Beam have to depend on DFS in Stage1. and Stage2 can using >>>>>> distribute cache if we remove the dependency of DFS for Beam in >>>>> Stage1.(Of >>>>>> course we need more detail here), we can bring up the discussion in a >>>>>> separate Beam dev@ ML, the current discussion focuses on Flink 1.10 >>>>>> version >>>>>> of UDF Environment and Dependency Management for python, so I >> recommend >>>>>> voting in the current ML for Flink 1.10, Beam artifact staging >>>>> improvements >>>>>> are discussed in a separate Beam dev@. >>>>>> >>>>>> What do you think? >>>>>> >>>>>> Best, >>>>>> Jincheng >>>>>> >>>>>> Thomas Weise <[hidden email]> 于2019年10月21日周一 下午10:25写道: >>>>>> >>>>>>> Beam artifact staging currently relies on shared file system and >> there >>>>>> are >>>>>>> limitations, for example when running locally with Docker and local >> FS. >>>>>> It >>>>>>> sounds like a distributed cache based implementation might be a good >>>>>>> (better?) option for artifact staging even for the Beam Flink runner? >>>>>>> >>>>>>> If so, can the implementation you propose be compatible with the Beam >>>>>>> artifact staging service so that it can be plugged into the Beam >> Flink >>>>>>> runner? >>>>>>> >>>>>>> Thanks, >>>>>>> Thomas >>>>>>> >>>>>>> >>>>>>> On Mon, Oct 21, 2019 at 2:34 AM jincheng sun < >> [hidden email] >>>>>> >>>>>>> wrote: >>>>>>> >>>>>>>> Hi Max, >>>>>>>> >>>>>>>> Sorry for the late reply. Regarding the issue you mentioned above, >>>>> I'm >>>>>>> glad >>>>>>>> to share my thoughts: >>>>>>>> >>>>>>>>> For process-based execution we use Flink's cache distribution >>>>> instead >>>>>>> of >>>>>>>> Beam's artifact staging. >>>>>>>> >>>>>>>> In current design, we use Flink's cache distribution to upload >> users' >>>>>>> files >>>>>>>> from client to cluster in both docker mode and process mode. That >> is, >>>>>>>> Flink's cache distribution and Beam's artifact staging service work >>>>>>>> together in docker mode. >>>>>>>> >>>>>>>> >>>>>>>>> Do we want to implement two different ways of staging artifacts? It >>>>>>> seems >>>>>>>> sensible to use the same artifact staging functionality also for the >>>>>>>> process-based execution. >>>>>>>> >>>>>>>> I agree that the implementation will be simple if we use the same >>>>>>> artifact >>>>>>>> staging functionality also for the process-based execution. However, >>>>>> it's >>>>>>>> not the best for performance as it will introduce an additional >>>>> network >>>>>>>> transmission, as in process mode TaskManager and python worker share >>>>>> the >>>>>>>> same environment, in which case the user files in Flink Distribute >>>>>> Cache >>>>>>>> can be accessed by python worker directly. We do not need the >> staging >>>>>>>> service in this case. >>>>>>>> >>>>>>>>> Apart from being simpler, this would also allow the process-based >>>>>>>> execution to run in other environments than the Flink TaskManager >>>>>>>> environment. >>>>>>>> >>>>>>>> IMHO, this case is more like docker mode, and we can share or reuse >>>>> the >>>>>>>> code of Beam docker mode. Furthermore, in this case python worker is >>>>>>>> launched by the operator, so it is always in the same environment as >>>>>> the >>>>>>>> operator. >>>>>>>> >>>>>>>> Thanks again for your feedback, and it is valuable for find out the >>>>>> final >>>>>>>> best architecture. >>>>>>>> >>>>>>>> Feel free to correct me if there is anything incorrect. >>>>>>>> >>>>>>>> Best, >>>>>>>> Jincheng >>>>>>>> >>>>>>>> Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: >>>>>>>> >>>>>>>>> I'm also late to the party here :) When I saw the first draft, I >>>>> was >>>>>>>>> thinking how exactly the design doc would tie in with Beam. Thanks >>>>>> for >>>>>>>>> the update. >>>>>>>>> >>>>>>>>> A couple of comments with this regard: >>>>>>>>> >>>>>>>>>> Flink has provided a distributed cache mechanism and allows users >>>>>> to >>>>>>>>> upload their files using "registerCachedFile" method in >>>>>>>>> ExecutionEnvironment/StreamExecutionEnvironment. The python files >>>>>> users >>>>>>>>> specified through "add_python_file", "set_python_requirements" and >>>>>>>>> "add_python_archive" are also uploaded through this method >>>>>> eventually. >>>>>>>>> >>>>>>>>> For process-based execution we use Flink's cache distribution >>>>> instead >>>>>>> of >>>>>>>>> Beam's artifact staging. >>>>>>>>> >>>>>>>>>> Apache Beam Portability Framework already supports artifact >>>>> staging >>>>>>>> that >>>>>>>>> works out of the box with the Docker environment. We can use the >>>>>>> artifact >>>>>>>>> staging service defined in Apache Beam to transfer the dependencies >>>>>>> from >>>>>>>>> the operator to Python SDK harness running in the docker container. >>>>>>>>> >>>>>>>>> Do we want to implement two different ways of staging artifacts? It >>>>>>>>> seems sensible to use the same artifact staging functionality also >>>>>> for >>>>>>>>> the process-based execution. Apart from being simpler, this would >>>>>> also >>>>>>>>> allow the process-based execution to run in other environments than >>>>>> the >>>>>>>>> Flink TaskManager environment. >>>>>>>>> >>>>>>>>> Thanks, >>>>>>>>> Max >>>>>>>>> >>>>>>>>> On 15.10.19 11:13, Wei Zhong wrote: >>>>>>>>>> Hi Thomas, >>>>>>>>>> >>>>>>>>>> Thanks a lot for your suggestion! >>>>>>>>>> >>>>>>>>>> As you can see from the section "Goals" that this FLIP focuses on >>>>>> the >>>>>>>>> dependency management in process mode. However, the APIs and design >>>>>>>>> proposed in this FLIP also applies for the docker mode. So it makes >>>>>>> sense >>>>>>>>> to me to also describe how this design is integated to the artifact >>>>>>>> staging >>>>>>>>> service of Apache Beam in docker mode. I have updated the design >>>>> doc >>>>>>> and >>>>>>>>> looking forward to your feedback. >>>>>>>>>> >>>>>>>>>> Thanks, >>>>>>>>>> Wei >>>>>>>>>> >>>>>>>>>>> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: >>>>>>>>>>> >>>>>>>>>>> Sorry for joining the discussion late. >>>>>>>>>>> >>>>>>>>>>> The Beam environment already supports artifact staging, it works >>>>>> out >>>>>>>> of >>>>>>>>> the >>>>>>>>>>> box with the Docker environment. I think it would be helpful to >>>>>>>> explain >>>>>>>>> in >>>>>>>>>>> the FLIP how this proposal relates to what Beam offers / how it >>>>>>> would >>>>>>>> be >>>>>>>>>>> integrated. >>>>>>>>>>> >>>>>>>>>>> Thanks, >>>>>>>>>>> Thomas >>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>>> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> >>>>>>> wrote: >>>>>>>>>>> >>>>>>>>>>>> +1 >>>>>>>>>>>> >>>>>>>>>>>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: >>>>>>>>>>>> >>>>>>>>>>>>> +1 >>>>>>>>>>>>> >>>>>>>>>>>>> Good job, Wei! >>>>>>>>>>>>> >>>>>>>>>>>>> Best, Hequn >>>>>>>>>>>>> >>>>>>>>>>>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu < >>>>> [hidden email]> >>>>>>>>> wrote: >>>>>>>>>>>>> >>>>>>>>>>>>>> Hi Wei, >>>>>>>>>>>>>> >>>>>>>>>>>>>> +1 (non-binding). Thanks for driving this. >>>>>>>>>>>>>> >>>>>>>>>>>>>> Thanks, >>>>>>>>>>>>>> Dian >>>>>>>>>>>>>> >>>>>>>>>>>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email] >>>>>> >>>>>>> 写道: >>>>>>>>>>>>>>> >>>>>>>>>>>>>>> +1 >>>>>>>>>>>>>>> >>>>>>>>>>>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: >>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> Hi all, >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> I would like to start the vote for FLIP-78[1] which is >>>>>>> discussed >>>>>>>>> and >>>>>>>>>>>>>>>> reached consensus in the discussion thread[2]. >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> The vote will be open for at least 72 hours. I'll try to >>>>>> close >>>>>>> it >>>>>>>>> by >>>>>>>>>>>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not >>>>>>> enough >>>>>>>>>>>>> votes. >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> Thanks, >>>>>>>>>>>>>>>> Wei >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> [1] >>>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>>>> >> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>>>>>>>>>> < >>>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>>>> >> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> [2] >>>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>>>> >> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>>>>>>>>>> < >>>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>>>> >> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>>> -- >>>>>>>>>>>> Best Regards >>>>>>>>>>>> >>>>>>>>>>>> Jeff Zhang >>>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>>>> >>> >> |
Hi all,
The voting time for FLIP-78 has passed. I'm closing the vote now. There were 6 +1 votes, 4 of which are binding: - Jincheng (binding) - Hequn (binding) - Thomas (binding) - Maximilian (binding) - Dian (non-binding) - Jeff (non-binding) There were no disapproving votes. Thus, FLIP-78 has been accepted. Thanks everyone for joining the discussion and giving feedback! Best, Wei > 在 2019年10月28日,15:06,Wei Zhong <[hidden email]> 写道: > > Thanks everyone for the votes! > I’ll summarize the voting result in a separate email. > > Best, > Wei > >> 在 2019年10月28日,11:38,jincheng sun <[hidden email]> 写道: >> >> Hi Max, >> >> Thanks for your feedback. You are right, we really need a more generic >> solution, I volunteer to draft an init solution design doc, and bring up >> the discussion in Beam @dev ASAP. (Maybe after release of Flink 1.10). >> >> Thank you for the voting. >> >> Best, >> Jincheng >> >> Maximilian Michels <[hidden email]> 于2019年10月26日周六 上午1:05写道: >> >>> Hi Wei, hi Jincheng, >>> >>> +1 on the current approach. >>> >>> I agree it would be nice to allow for the Beam artifact staging to use >>> Flink's BlobServer. However, the current implementation which uses the >>> distributed file system is more generic, since the BlobServer is only >>> available on the TaskManager and not necessarily inside Harness >>> containers (Stage 3). >>> >>> So for stage 1 (Client <=> JobServer) we could certainly use the >>> BlobServer. Stage 2 (Flink job submission) already uses it, and Stage 3 >>> (container setup) probably has to have some form of distributed file >>> system or directory which has been populated with the dependencies. >>> >>> Thanks, >>> Max >>> >>> On 25.10.19 03:45, Wei Zhong wrote: >>>> Hi Max, >>>> >>>> Is there any other concerns from your side? I appreciate if you can give >>> some feedback and vote on this. >>>> >>>> Best, >>>> Wei >>>> >>>>> 在 2019年10月25日,09:33,jincheng sun <[hidden email]> 写道: >>>>> >>>>> Hi Thomas, >>>>> >>>>> Thanks for your explanation. I understand your original intention. I >>> will >>>>> seriously consider this issue. After I have the initial solution, I will >>>>> bring up a further discussion in Beam ML. >>>>> >>>>> Thanks for your voting. :) >>>>> >>>>> Best, >>>>> Jincheng >>>>> >>>>> >>>>> Thomas Weise <[hidden email]> 于2019年10月25日周五 上午7:32写道: >>>>> >>>>>> Hi Jincheng, >>>>>> >>>>>> Yes, this topic can be further discussed on the Beam ML. The only >>> reason I >>>>>> brought it up here is that it would be desirable from Beam Flink runner >>>>>> perspective for the artifact staging mechanism that you work on to be >>>>>> reusable. >>>>>> >>>>>> Stage 1 in Beam is also up to the runner, artifact staging is a service >>>>>> discovered from the job server and that the Flink job server currently >>> uses >>>>>> DFS is not set in stone. My interest was more regarding assumptions >>>>>> regarding the artifact structure, which may or may not allow for >>> reusable >>>>>> implementation. >>>>>> >>>>>> +1 for the proposal otherwise >>>>>> >>>>>> Thomas >>>>>> >>>>>> >>>>>> On Mon, Oct 21, 2019 at 8:40 PM jincheng sun <[hidden email] >>>> >>>>>> wrote: >>>>>> >>>>>>> Hi Thomas, >>>>>>> >>>>>>> Thanks for sharing your thoughts. I think improve and solve the >>>>>> limitations >>>>>>> of the Beam artifact staging is good topic(For beam). >>>>>>> >>>>>>> As I understand it as follows: >>>>>>> >>>>>>> For Beam(data): >>>>>>> Stage1: BeamClient ------> JobService (data will be upload to >>> DFS). >>>>>>> Stage2: JobService(FlinkClient) ------> FlinkJob (operator >>> download >>>>>>> the data from DFS) >>>>>>> Stage3: Operator ------> Harness(artifact staging service) >>>>>>> >>>>>>> For Flink(data): >>>>>>> Stage1: FlinkClient(data(local) upload to BlobServer using >>> distribute >>>>>>> cache) ------> Operator (data will be download from BlobServer). Do >>> not >>>>>>> have to depend on DFS. >>>>>>> Stage2: Operator ------> Harness(for docker we using artifact >>> staging >>>>>>> service) >>>>>>> >>>>>>> So, I think Beam have to depend on DFS in Stage1. and Stage2 can using >>>>>>> distribute cache if we remove the dependency of DFS for Beam in >>>>>> Stage1.(Of >>>>>>> course we need more detail here), we can bring up the discussion in a >>>>>>> separate Beam dev@ ML, the current discussion focuses on Flink 1.10 >>>>>>> version >>>>>>> of UDF Environment and Dependency Management for python, so I >>> recommend >>>>>>> voting in the current ML for Flink 1.10, Beam artifact staging >>>>>> improvements >>>>>>> are discussed in a separate Beam dev@. >>>>>>> >>>>>>> What do you think? >>>>>>> >>>>>>> Best, >>>>>>> Jincheng >>>>>>> >>>>>>> Thomas Weise <[hidden email]> 于2019年10月21日周一 下午10:25写道: >>>>>>> >>>>>>>> Beam artifact staging currently relies on shared file system and >>> there >>>>>>> are >>>>>>>> limitations, for example when running locally with Docker and local >>> FS. >>>>>>> It >>>>>>>> sounds like a distributed cache based implementation might be a good >>>>>>>> (better?) option for artifact staging even for the Beam Flink runner? >>>>>>>> >>>>>>>> If so, can the implementation you propose be compatible with the Beam >>>>>>>> artifact staging service so that it can be plugged into the Beam >>> Flink >>>>>>>> runner? >>>>>>>> >>>>>>>> Thanks, >>>>>>>> Thomas >>>>>>>> >>>>>>>> >>>>>>>> On Mon, Oct 21, 2019 at 2:34 AM jincheng sun < >>> [hidden email] >>>>>>> >>>>>>>> wrote: >>>>>>>> >>>>>>>>> Hi Max, >>>>>>>>> >>>>>>>>> Sorry for the late reply. Regarding the issue you mentioned above, >>>>>> I'm >>>>>>>> glad >>>>>>>>> to share my thoughts: >>>>>>>>> >>>>>>>>>> For process-based execution we use Flink's cache distribution >>>>>> instead >>>>>>>> of >>>>>>>>> Beam's artifact staging. >>>>>>>>> >>>>>>>>> In current design, we use Flink's cache distribution to upload >>> users' >>>>>>>> files >>>>>>>>> from client to cluster in both docker mode and process mode. That >>> is, >>>>>>>>> Flink's cache distribution and Beam's artifact staging service work >>>>>>>>> together in docker mode. >>>>>>>>> >>>>>>>>> >>>>>>>>>> Do we want to implement two different ways of staging artifacts? It >>>>>>>> seems >>>>>>>>> sensible to use the same artifact staging functionality also for the >>>>>>>>> process-based execution. >>>>>>>>> >>>>>>>>> I agree that the implementation will be simple if we use the same >>>>>>>> artifact >>>>>>>>> staging functionality also for the process-based execution. However, >>>>>>> it's >>>>>>>>> not the best for performance as it will introduce an additional >>>>>> network >>>>>>>>> transmission, as in process mode TaskManager and python worker share >>>>>>> the >>>>>>>>> same environment, in which case the user files in Flink Distribute >>>>>>> Cache >>>>>>>>> can be accessed by python worker directly. We do not need the >>> staging >>>>>>>>> service in this case. >>>>>>>>> >>>>>>>>>> Apart from being simpler, this would also allow the process-based >>>>>>>>> execution to run in other environments than the Flink TaskManager >>>>>>>>> environment. >>>>>>>>> >>>>>>>>> IMHO, this case is more like docker mode, and we can share or reuse >>>>>> the >>>>>>>>> code of Beam docker mode. Furthermore, in this case python worker is >>>>>>>>> launched by the operator, so it is always in the same environment as >>>>>>> the >>>>>>>>> operator. >>>>>>>>> >>>>>>>>> Thanks again for your feedback, and it is valuable for find out the >>>>>>> final >>>>>>>>> best architecture. >>>>>>>>> >>>>>>>>> Feel free to correct me if there is anything incorrect. >>>>>>>>> >>>>>>>>> Best, >>>>>>>>> Jincheng >>>>>>>>> >>>>>>>>> Maximilian Michels <[hidden email]> 于2019年10月16日周三 下午4:23写道: >>>>>>>>> >>>>>>>>>> I'm also late to the party here :) When I saw the first draft, I >>>>>> was >>>>>>>>>> thinking how exactly the design doc would tie in with Beam. Thanks >>>>>>> for >>>>>>>>>> the update. >>>>>>>>>> >>>>>>>>>> A couple of comments with this regard: >>>>>>>>>> >>>>>>>>>>> Flink has provided a distributed cache mechanism and allows users >>>>>>> to >>>>>>>>>> upload their files using "registerCachedFile" method in >>>>>>>>>> ExecutionEnvironment/StreamExecutionEnvironment. The python files >>>>>>> users >>>>>>>>>> specified through "add_python_file", "set_python_requirements" and >>>>>>>>>> "add_python_archive" are also uploaded through this method >>>>>>> eventually. >>>>>>>>>> >>>>>>>>>> For process-based execution we use Flink's cache distribution >>>>>> instead >>>>>>>> of >>>>>>>>>> Beam's artifact staging. >>>>>>>>>> >>>>>>>>>>> Apache Beam Portability Framework already supports artifact >>>>>> staging >>>>>>>>> that >>>>>>>>>> works out of the box with the Docker environment. We can use the >>>>>>>> artifact >>>>>>>>>> staging service defined in Apache Beam to transfer the dependencies >>>>>>>> from >>>>>>>>>> the operator to Python SDK harness running in the docker container. >>>>>>>>>> >>>>>>>>>> Do we want to implement two different ways of staging artifacts? It >>>>>>>>>> seems sensible to use the same artifact staging functionality also >>>>>>> for >>>>>>>>>> the process-based execution. Apart from being simpler, this would >>>>>>> also >>>>>>>>>> allow the process-based execution to run in other environments than >>>>>>> the >>>>>>>>>> Flink TaskManager environment. >>>>>>>>>> >>>>>>>>>> Thanks, >>>>>>>>>> Max >>>>>>>>>> >>>>>>>>>> On 15.10.19 11:13, Wei Zhong wrote: >>>>>>>>>>> Hi Thomas, >>>>>>>>>>> >>>>>>>>>>> Thanks a lot for your suggestion! >>>>>>>>>>> >>>>>>>>>>> As you can see from the section "Goals" that this FLIP focuses on >>>>>>> the >>>>>>>>>> dependency management in process mode. However, the APIs and design >>>>>>>>>> proposed in this FLIP also applies for the docker mode. So it makes >>>>>>>> sense >>>>>>>>>> to me to also describe how this design is integated to the artifact >>>>>>>>> staging >>>>>>>>>> service of Apache Beam in docker mode. I have updated the design >>>>>> doc >>>>>>>> and >>>>>>>>>> looking forward to your feedback. >>>>>>>>>>> >>>>>>>>>>> Thanks, >>>>>>>>>>> Wei >>>>>>>>>>> >>>>>>>>>>>> 在 2019年10月15日,01:54,Thomas Weise <[hidden email]> 写道: >>>>>>>>>>>> >>>>>>>>>>>> Sorry for joining the discussion late. >>>>>>>>>>>> >>>>>>>>>>>> The Beam environment already supports artifact staging, it works >>>>>>> out >>>>>>>>> of >>>>>>>>>> the >>>>>>>>>>>> box with the Docker environment. I think it would be helpful to >>>>>>>>> explain >>>>>>>>>> in >>>>>>>>>>>> the FLIP how this proposal relates to what Beam offers / how it >>>>>>>> would >>>>>>>>> be >>>>>>>>>>>> integrated. >>>>>>>>>>>> >>>>>>>>>>>> Thanks, >>>>>>>>>>>> Thomas >>>>>>>>>>>> >>>>>>>>>>>> >>>>>>>>>>>> On Mon, Oct 14, 2019 at 8:09 AM Jeff Zhang <[hidden email]> >>>>>>>> wrote: >>>>>>>>>>>> >>>>>>>>>>>>> +1 >>>>>>>>>>>>> >>>>>>>>>>>>> Hequn Cheng <[hidden email]> 于2019年10月14日周一 下午10:55写道: >>>>>>>>>>>>> >>>>>>>>>>>>>> +1 >>>>>>>>>>>>>> >>>>>>>>>>>>>> Good job, Wei! >>>>>>>>>>>>>> >>>>>>>>>>>>>> Best, Hequn >>>>>>>>>>>>>> >>>>>>>>>>>>>> On Mon, Oct 14, 2019 at 2:54 PM Dian Fu < >>>>>> [hidden email]> >>>>>>>>>> wrote: >>>>>>>>>>>>>> >>>>>>>>>>>>>>> Hi Wei, >>>>>>>>>>>>>>> >>>>>>>>>>>>>>> +1 (non-binding). Thanks for driving this. >>>>>>>>>>>>>>> >>>>>>>>>>>>>>> Thanks, >>>>>>>>>>>>>>> Dian >>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> 在 2019年10月14日,下午1:40,jincheng sun <[hidden email] >>>>>>> >>>>>>>> 写道: >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> +1 >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>> Wei Zhong <[hidden email]> 于2019年10月12日周六 下午8:41写道: >>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> Hi all, >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> I would like to start the vote for FLIP-78[1] which is >>>>>>>> discussed >>>>>>>>>> and >>>>>>>>>>>>>>>>> reached consensus in the discussion thread[2]. >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> The vote will be open for at least 72 hours. I'll try to >>>>>>> close >>>>>>>> it >>>>>>>>>> by >>>>>>>>>>>>>>>>> 2019-10-16 18:00 UTC, unless there is an objection or not >>>>>>>> enough >>>>>>>>>>>>>> votes. >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> Thanks, >>>>>>>>>>>>>>>>> Wei >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> [1] >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78%3A+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>>>>>>>>>>> < >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>> https://cwiki.apache.org/confluence/display/FLINK/FLIP-78:+Flink+Python+UDF+Environment+and+Dependency+Management >>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> [2] >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>>>>>>>>>>> < >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>> http://apache-flink-mailing-list-archive.1008284.n3.nabble.com/DISCUSS-Flink-Python-UDF-Environment-and-Dependency-Management-td33514.html >>>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>> >>>>>>>>>>>>>>> >>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>>>>>>>>> -- >>>>>>>>>>>>> Best Regards >>>>>>>>>>>>> >>>>>>>>>>>>> Jeff Zhang >>>>>>>>>>>>> >>>>>>>>>>> >>>>>>>>>> >>>>>>>>> >>>>>>>> >>>>>>> >>>>>> >>>> >>> > |
Free forum by Nabble | Edit this page |